Основной строительный материал организма человека - это. Строительные материалы человеческого организма Что является строительным материалом клетки

Наше тело состоит из большого количества различных веществ. И существует всего два естественных пути, которыми эти вещества могут в организм попасть. Первый путь предназначен всего лишь для одного, зато наиболее важного элемента - кислорода. Все остальные вещества должны поступать в организм перорально 1 . Другие пути введения веществ в организм - неестественны и должны применяться только в тех ситуациях, когда пероральный путь либо невозможен, либо нецелесообразен.

Предназначение веществ, поступающих с пищей в организм, разное. В данной статье мы посмотрим на все глазами строителя. Из каких составляющих состоит человеческое тело. Что в нем содержится и в каких количествах.

№1 ВОДА

Больше всего в нас - воды. В организме млекопитающего вода составляет более половины веса тела. Она не только единственная среда, в которой происходят все биохимические реакции. Это и строительный материал любого «участка» тела: от крови, мышц и мозга (где ее много) до ногтей и волос (где ее мало). Соответственно, и поступать в организм воды должно больше, чем других веществ.

Особенностью выпитой воды является то, что только 20% ее «встраивается» в клетки, а 80% проходит транзитом, «вымывая» продукты обмена веществ.

Поэтому воде следует уделять заслуженное особое внимание и поэтому, воду ставим №1 в рейтинге структурных 2 питательных веществ.

№2 БЕЛКИ

Про то, что белки являются «строительным» материалом для мышц, знают, многие. Но, скелетные мышцы — это лишь один из множества органов, в состав которых входят белки. Внутренние органы (органы пищеварения, дыхания, мочевыведения, кровообращения) тоже состоят преимущественно из белков. И наличие в них белков намного важнее, чем в скелетной мускулатуре, ибо поперечнополосатые мышцы не являются жизненно важным органом. (Ну, может же человек жить с ненакачанным бицепсом). Также вещества белковой природы составляют до 40% состава костей. В сумме тело человека содержит около 15% белков. Итого: 2 место.

№3 ЛИПИДЫ (жиры)

Возможно, многие читатели будут удивлены, но третье место в рейтинге «строительных материалов» принадлежит липидам (по-простому — жирам). У многих липиды ассоциируются с жирами подкожной жировой клетчатки. И это не удивительно, ведь от толщины этой «подкожки» очень сильно зависит физическая привлекательность человека. Процент липидов в организме может очень сильно варьировать именно за счет жиров (простых липидов) подкожной клетчатки и внутреннего жира (околокишечного и околосердечного). Такие «вариации» возможны благодаря тому, что жиры (= триглицериды) помимо структурной функции выполняют также и энергетическую. А то, в каких пределах человек может «запасать энергию», лучше всего иллюстрирует население США, где у каждого третьего жителя — ожирение.

Кроме триглицеридов, в организме есть более важные их «последователи» — сложные липиды : фосфолипиды, гликолипиды, стероиды и др.

Фосфолипиды (липиды, соединенные с фосфорной кислотой) формируют клеточные стенки всех клеток живых веществ. И от их наличия зависит, сможет ли клетка правильно «впускать» и «выпускать» из себя другие вещества. Много фосфолипидов в составе нервной ткани и, особенно, в головном мозге. И поэтому становится понятным совет употреблять рыбу и творог для улучшения памяти.

Половые гормоны (и другие гормоны коркового вещества надпочечников) состоят из стероидов и об их важности догадываются все половозрелые особи.

Липиды - так же основа строения иммунных клеток, особенно тех, которые отвечают за «противоопухолевый» иммунитет.

Поэтому, никогда не ограничивайте себя в пищевых жирах (но и меру знайте). «Приемлемым» считается содержание липидов в пище и в организме до 25%.

№4 МАКРО- и МИКРОЭЛЕМЕНТЫ

Макро- и микроэлементы - это химические элементы и различные их соединения. Чаще всего - это металлы и их соли.

Из «английских» языков к нам пришел и прочно укоренился термин «минеральные вещества ». (О его неправильности вы можете почитать в статье «» в Википедии) .

Помимо множества выполняемых функций, макро- и микроэлементы являются пластическим 2 материалом. Например, кальция в организме содержится более 1кг и почти весь он находится в костях и зубах. 70-80% кальция организм каждый день «теряет» и «восстанавливает». И проблема «не восстановления» этого элемента очень велика: около 150 заболеваний человека связаны с дефицитом кальция. Вот почему о кальции столько разговоров.

Кроме кальция структурными элементами являются фосфор, магний, железо, а также др. элементы, количество которых в организме невелико, однако роль - огромная.

№5 УГЛЕВОДЫ

Углеводы - это «страшная вещь», их все боятся. Перед ними трепещут все особи женского пола, для которых красота физического тела является фактором №1 для достижения счастья в жизни. И понимание процессов, происходящих в организме у которых, воспитано глянцевыми журналами.

Углеводов в рационе 3 должно содержаться около 55% 4 , а в состав организма их входит не более 1,5% (в виде гликогена и в составе ДНК, РНК, АТФ).

Как видно на примере углеводов: количество структурных элементов организма не зависит от количества употребляемых пищевых веществ . У каждого свое предназначение.

Итог

Напомним, что речь в данной статье шла только о тех элементах человеческого организма, которые поступают с пищей и только о тех их количествах, которые выполняют структурную функцию. Например, липидов в организме может быть значительно больше белков (особенно это касается женщин и является их физиологической особенностью), но пластическую роль больше выполняют именно белки, а жиры при их заметной массе - «законсервированная» впрок энергия.

Итак, подводя итог:

Вода > 65%

Белки - 14-15%

Липиды - 12-25%

Минералы –5%

Углеводы - 1,5%

Стоит обратить внимание на то, что приведено общее процентное содержание в организме пищевых веществ (без учета выполняемых функций). Невозможно точно узнать, у какого их количества пластическое, а у какого иное предназначение. Наиболее ярко эту ситуацию иллюстрируют липиды: они осуществляют структурную, энергетическую, термоизоляционную и регуляционную функции. Ведь одни и те же количества липидов являются полифункциональными.

Кроме того, приведенные здесь значения усреднены и относительны. Не учтены такие факторы как возраст, пол, тип телосложения, вид деятельности. А они могут влиять на содержание и изменять вышеуказанные показатели в широких пределах. И у большинства женщин «за двадцать» белки с липидами в нашем рейтинге поменялись бы местами.

Представленный «рейтинг» не опубликует авторитетный американский журнал, о нем не расскажет известная радиостанция, его не покажут по телеканалу с многомиллионной аудиторией. Несмотря на важность и значимость, популярность информации о питании в СМИ невелика. Спасибо, что проявляете интерес к данной теме, спасибо, что Вы — «другие» . ■

Примечания

1 Перорально (от лат.) — через рот.
2 Под «строительными» веществами следует понимать «структурные» или «пластические».
3 Рацион - набор продуктов на определённый срок (чаще всего на сутки).
4 Процентное содержание основных компонентов пищи принято рассчитывать исходя из общей их калорийности.

5 Нутриенты = питательные вещества.

Источники информации

.

Как в и любой другой научной сфере, в клеточной биологии встречаются некоторые постулаты, которые в один прекрасный миг оказываются и не постулатами вовсе, а всего лишь теоремами. Так получилось, например, со стволовыми клетками и представлениями учёных о том, на что эти клетки способны.

Биотехнологическая компания Genzyme сделала очень громкое - и пока что спорное - заявление, согласно которому в организме взрослого человека гораздо меньше различных типов стволовых клеток, чем полагалось ранее.

Точнее сказать, Genzyme утверждает, что два наиболее перспективных для лечения всяких сложных заболеваний типа стволовых клеток, на самом деле, - суть одно и то же.

Теперь некоторые подробности.

Стволовыми клетками называются клетки, способные трансформироваться в различные типы биологических тканей в организме. Иными словами, такие клетки являются основным "строительным материалом" для формирования и регенерации организма.

Долгое время учёный мир предполагал, что на создание любых типов ткани способны только эмбриональные стволовые клетки. Что же касается их близких родственников, присутствующих в организме взрослого человека, то их возможности ограничены лишь определёнными типами тканей - в пределах их клеточной специализации.

Эмбриональные стволовые клетки могут образовывать любые типы тканей, в то время, как потенциал взрослых стволовых клеток долгое время считался ограниченным.

Естественно, что полученные из организма человека стволовые клетки можно использовать для лечения болезней, связанных с тяжёлыми повреждениями ткани - в том числе, некоторых сердечных недугов и заболеваний мозга.

В связи с этим в какой-то момент появился термин "терапевтическое клонирование" - то есть, клонирование, нацеленное на получение из эмбрионов (возрастом в 10 дней) этих драгоценных стволовых клеток для последующего выращивания, грубо говоря, биологических "заплат" для повреждённого организма.

Увы, получение этих клеток неизбежно повлекло бы за собой разрушение эмбриона. Как нетрудно понять, эти планы немедленно натолкнулись на яростное сопротивление со стороны противников клонирования как такового, и вообще всех, кто считает, что человеческая жизнь - не то, чтобы игрушка.

С точки зрения всех христианских церквей, например, жизнь человека начинается в момент его зачатия, а не рождения из утробы матери. Иными словами, между уничтожением эмбриона - донора стволовых клеток, абортом и "обычным" убийством для людей религиозных особой разницы нет.

Поэтому учёные искали способы получать стволовые клетки из других источников.

Как уже сказано, долгое время считалось, что стволовые клетки, наличествующие во взрослом организме, универсальными не являются, и способны производить лишь некоторые, специфичные для данного вида клеток, типы живой ткани.

Постепенно, впрочем, выяснилось, что одни и те же клетки могут формировать сразу несколько типов тканей.

А в 2002 году некая Кэтрин Верфэльи (Catherine Verfaillie) из университета Миннесоты (University of Minnesota), объявила об обнаружении некоего универсального типа взрослых стволовых клеток - (multipotent adult progenitor cells - MAPC).

Ещё одним "многообещающим" типом стволовых клеток, по-видимому, являются мезенхимальные стволовые клетки (mesenchymal stem cells - MSC), обнаруженные биотехнологической компанией Osiris Therapeutics.

Да, это тоже было довольно значимым открытием.

Теперь же крупная биотехнологическая компания Genzyme (гигант, как её окрестил New Scientist), утверждает, что и MSC и MAPC - одно и то же.

Как это может быть, спрашивается? А всё очень просто, утверждает доктор Росс Тьюбо (Ross Tubo) из Genzyme. По его мнению, различные научные учреждения (в данном случае - университет Массачусетса и Osiris) просто использовали разное оборудование - потому-то результаты их исследований MSC и MAPC оказались "столь различны меж собой".

Это выяснилось, когда сотрудники Genzyme занялись изучением результатов, полученных другими учёными. Поэтому команда Тьюбо занялась выработкой стандартного способа оценки потенциала взрослых стволовых клеток.

Но сначала у ряда добровольцев взяли фрагменты ткани костного мозга, и, следуя методикам компании Osiris, доктора Верфэльи и других, получила из него стволовые клетки. Как выяснилось, каждый раз на поверхности полученных разными способами клеток наблюдались всё те же 12 протеинов. Больше того, вне зависимости от способа получения клеток, они вели себя одинаково, когда инициировался процесс преображения в нервную или хрящевую ткань.

На основании этих показателей Тьюбо сделал вывод, что речь идёт об одних и тех же клетках.

Есть и ещё одно "но": технология получения MAPC подразумевает, что выращиваемые клетки из костного мозга должны находиться на большом расстоянии друг от друга.

Команде Тьюбо ничего не удалось добиться таким способом, поэтому плотность выращиваемых ими клеток была очень высокой...

Поэтому, по мнению сотрудников компании Athersys, лицензировавшей технологию получения MAPC из костного мозга, Тьюбо на самом деле получили не MAPC, а именно MSC. По мнению сотрудников Athersys, получить MAPC, не отклоняясь от первичной технологии, непросто, но возможно. И тогда эти клетки сильно отличаются от MSC.

Биология клетки в общих чертах известна каждому из школьной программы. Предлагаем вам вспомнить изученное когда-то, а также открыть для себя что-то новое о ней. Название "клетка" было предложено еще в 1665 году англичанином Р. Гуком. Однако лишь в 19 веке ее начали изучать систематически. Ученых заинтересовала, среди прочего, и роль клетки в организме. Они могут быть в составе множества различных органов и организмов (икринок, бактерий, нервов, эритроцитов) или же быть самостоятельными организмами (простейшими). Несмотря на все их многообразие, в функциях и строении их обнаруживается много общего.

Функции клетки

Все они различны по форме и зачастую по функциям. Могут отличаться довольно сильно и клетки тканей и органов одного организма. Однако биология клетки выделяет функции, которые присущи всем их разновидностям. Именно здесь всегда происходит синтез белков. Этот процесс контролируется Клетка, которая не синтезирует белки, в сущности мертва. Живая клетка - это та, компоненты которой все время меняются. Однако основные классы веществ при этом остаются неизменными.

Все процессы в клетке осуществляются с использованием энергии. Это питание, дыхание, размножение, обмен веществ. Поэтому живая клетка характеризуется тем, что в ней все время происходит энергетический обмен. Каждая из них обладает общим важнейшим свойством - способностью запасать энергию и тратить ее. Среди других функций можно отметить деление и раздражимость.

Все живые клетки могут реагировать на химические или физические изменения среды, окружающей их. Это свойство называется возбудимостью или раздражимостью. В клетках при возбуждении меняется скорость распада веществ и биосинтеза, температура, потребление кислорода. В таком состоянии они выполняют функции, свойственные им.

Строение клетки

Ее строение довольно сложно, хотя она считается самой простой формой жизни в такой науке, как биология. Клетки расположены в межклеточном веществе. Оно обеспечивает им дыхание, питание и механическую прочность. Ядро и цитоплазма - основные составные части каждой клетки. Каждая из них покрыта мембраной, строительный элемент для которой - молекула. Биология установила, что мембрана состоит из множества молекул. Они расположены в несколько слоев. Благодаря мембране вещества проникают избирательно. В цитоплазме находятся органоиды - мельчайшие структуры. Это эндоплазматическая сеть, митохондрии, рибосомы, клеточный центр, комплекс Гольджи, лизосомы. Вы лучше поймете, как выглядят клетки, изучив рисунки, представленные в этой статье.

Мембрана

Эндоплазматическая сеть

Этот органоид был назван так из-за того, что он находится в центральной части цитоплазмы (с греческого языка слово "эндон" переводится как "внутри"). ЭПС - очень разветвленная система пузырьков, трубочек, канальцев различной формы и величины. Они отграничены от мембранами.

Различаются два вида ЭПС. Первый - гранулярная, которая состоит из цистерн и канальцев, поверхность которых усеяна гранулами (зернышками). Второй вид ЭПС - агранулярная, то есть гладкая. Гранами являются рибосомы. Любопытно, что в основном гранулярная ЭПС наблюдается в клетках зародышей животных, тогда как у взрослых форм она обычно агранулярная. Как известно, рибосомы являются местом синтеза белка в цитоплазме. Исходя из этого, можно сделать предположение, что гранулярная ЭПС бывает преимущественно в клетках, где происходит активный синтез белка. Агранулярная сеть, как считается, представлена в основном в тех клетках, где протекает активный синтез липидов, то есть жиров и различных жироподобных веществ.

И тот и другой вид ЭПС не просто принимает участие в синтезе органических веществ. Здесь эти вещества накапливаются, а также транспортируются к необходимым местам. ЭПС также регулирует обмен веществ, который происходит между окружающей средой и клеткой.

Рибосомы

Митохондрии

К энергетическим органоидам относятся митохондрии (на фото выше) и хлоропласты. Митохондрии - это своеобразные энергетические станции каждой клетки. Именно в них извлекается энергия из питательных веществ. Митохондрии имеют изменчивую форму, однако чаще всего это гранулы или нити. Число и размеры их непостоянны. Это зависит от того, какова функциональная активность той или иной клетки.

Если рассмотреть электронную микрофотографию, можно заметить, что митохондрии имеют две мембраны: внутреннюю и наружную. Внутренняя образует выросты (кристы), устланные ферментами. Благодаря наличию крист общая поверхность митохондрий увеличивается. Это важно для того, чтобы деятельность ферментов протекала активно.

В митохондриях ученые обнаружили специфические рибосомы и ДНК. Это позволяет этим органоидам самостоятельно размножаться в процессе деления клетки.

Хлоропласты

Что касается хлоропластов, то по форме это диск или шар, имеющий двойную оболочку (внутреннюю и наружную). Внутри этого органоида также имеются рибосомы, ДНК и граны - особые мембранные образования, связанные как с внутренней мембраной, так и между собой. Хлорофилл находится именно в мембранах гран. Благодаря ему энергия солнечного света превращается в химическую энергию аденозинтрифосфат (АТФ). В хлоропластах она используется для синтеза углеводов (образуются из воды и углекислого газа).

Согласитесь, представленную выше информацию нужно знать не только для того, чтобы сдать тест по биологии. Клетка - это строительный материал, из которого состоит наш организм. Да и вся живая природа - сложная совокупность клеток. Как вы видите, в них выделяется множество составных частей. На первый взгляд может показаться, что изучить строение клетки - непростая задача. Однако если разобраться, эта тема не так уж и сложна. Ее необходимо знать, чтобы хорошо разбираться в такой науке, как биология. Состав клетки - одна из основополагающих ее тем.

Основной структуроной единицей строения живого является клетка. Клетка - строительный материал для тканей, о чем свидетельствует клеточная теория. Деятельность организма - сумма жизнедеятельности отдельных клеток.

Элементарная единица всего живого, поэтому ей присущи свойства живых организмов: высокоупорядоченное строение, обмен веществ, раздражимость, рост, развитие, размножение, регенерация и другие свойства.

Строение.

Снаружи клетка покрыта клеточной мембраной, отделяющей клетку от внешней среды. Она выполняет следующие функции: защитную, разграничительную, рецепторную (восприятие сигналов внешней среды), транспортную.

Цитоплазма образует ряд специфических структур. Это межклеточные соединения, микроворсинки, реснички, клеточные отростки. Межклеточные соединения (контакты) подразделяются на простые и сложные. При простом соединении цитоплазмы соседних клеток формируют выросты, которые соединяют клетки. Между цитоплазмами всегда сохраняется межклеточная щель. При сложных соединениях клетки соединяются с помощью волокон, а расстояния между клетками почти нет. Микроворсинки - это лишенные органоидов пальцевидные выросты клетки. Реснички и жгутики выполняют функцию движения.

Митохондрии содержат вещества, богатые энергией, участвуют в процессах клеточного дыхания и преобразования энергии в форму, доступную для использования клеткой. Количество, размеры и расположение митохондрий зависит от функции клетки, ее потребности в энергии. Митохондрии содержат собственную ДНК. Около 2% ДНК клетки содержится в митохондриях. В рибосомах образуются клеточные белки. Рибосомы участвуют в синтезе белка, присутствуют во всех клетках человека, за исключением зрелых эритроцитов. Рибосомы могут свободно располагаться в цитоплазме. Они синтезируют белок, необходимый для жизнедеятельности самой клетки. Синтез белка связан с процессом транскрипции - переписывания информации, хранящейся в ДНК.

Ядро - важнейший органоид клетки: в нем содержится особое вещество хроматин, из которого перед делением клетки образуются нитевидные хромосомы - носители наследственных признаков и свойств человека. В состав хроматина входят ДНК и небольшое количество РНК. В делящемся ядре хроматин спирализуется, в результате чего становятся видимыми хромосомы. Ядрышко (одно или несколько) - плотное округлое тельце, размеры которого тем больше, чем интенсивнее протекает белковый синтез. В ядрышке образуются рибосомы.

Клетка состоит из цитоплазмы и ядра, а снаружи покрыта мембраной(3), через которую происходит обмен веществ между клетками. Цитоплазма(4) - вязкое полужидкое вещество, включающее в себя органоиды, выполняющие разные функции. Митохондрии(7) выделяют энергию, сеть канальцев(5) - это «дорога», которая обеспечивает обмен веществ между органоидами в клетке, рибосомы(2) - место образования белков, клеточный центр(1) используется клеткой при делении, ядро(8) содержит хроматин. В ядре клетки также выделяют ядрышко(6).

Состав.

Клетки организма человека состоят из разнообразных химических соединений неорганической и органической природы. К неорганическим веществам клетки относятся вода и соли. Вода составляет до 80% массы клетки. Она растворяет вещества, участвующие в химических реакциях: перености питательные вещества, выводит из клетки отработанные и вредные соединения. Минеральные соли - хлорид натрия, хлорид калия и др. - играют важную роль в распределении воды между клетками и межклеточным веществом. Отдельные химические элементы, такие, как кислород, водород, азот, сера, железо, магний, цинк, иод, фосфор, участвуют в создании жизненно важных органических соединений.

Органические соединения образуют до 20-30% массы каждой клетки. Среди органических соединений наибольшее значение имеют углеводы, жиры, белки и нуклеиновые кислоты.

Углеводы состоят из углерода, водорода и кислорода. К углеводам относятся глюкоза, животный крахмал - гликоген. Многие углеводы хорошо растворимы в воде и являются основным источником энергии для осуществления всех жизненных процессов. При распаде 1 г углеводов освобождается 17,2 кДж энергии.

Жиры образованы теми же химическими элементами, что и углеводы. Жиры нерастворимы в воде. Они входят в состав клеточных мембран. Жиры также служат запасным источником энергии в организме. При полном расщиплении 1 г жира освобождается 39,1 кДж энергии.

Белки являются основными веществами клетки. Белки - самые сложные из встречающихся в природе органических веществ, хотя и состоят из относительно небольшого количества химических элементов - углерод, водород, кислород, азот, сера. Молекула белка имеет большие размеры и представляет собой цепь, состоящую из десятков и сотен более простых соединений - аминокислот. Белки служат главным строительным материалом. Они участвуют в формировании мембран клетки, ядра, цитоплазмы, органоидов. Многие белки выполняют роль ускорителей течения химических реакций - ферментов. Белки имеют разнообразное строение. Только в одной клетке насчитывается до 1000 разных белков.

Нуклеиновые кислоты образуются в клеточном ядре. С этим связано их название (от лат. «нуклеус» - ядро). Они состоят из углерода, водорода и фосфора. Нуклеиновые кислоты бывают двух типов - дезоксирибонуклеиновые (ДНК) и рибонуклеиновые (РНК). ДНК находятся в основном в хромосомах клеток. ДНК определяет состав белков клетки и передачу наследственных признаков и свойств от родителей к потомству. Функции РНК связаны с образованием характерных для этой клетки белков.

Жизнедеятельность.

В клетке происходит биосинтез (создание сложных органических соединений), обмен веществ между клеткой и окружающей средой, в результате которого состав клетки постоянно обновляется: одни вещества в них образуются, другие разрушаются. Клетка также способна реагировать на внешние и внутренние воздействия - раздражители называется раздражимостью. Одним из важнейших видов жизнедеятельности клетки является ее способность к размножению.

С помощью размножения наш организм развивается, растет, обновляется. В основе размножения организма лежит размножение клеток. Существует два способа размножения - прямое и непрямое. При прямом делении ядро клетки без особых изменений делится на две части, но такое в организме случается крайне редко. Обычно клетки делятся непрямым способом. Это сложный процесс, состоящий из нескольких фаз. Деление происходит примерно в течение 0.5 часов. При делении клеток особое вещество - хроматин передается и дочерней клетке, наследственный материал клетки точно и полно распределяется. Поэтому дочерние клетки так похожи на материнскую.

Таким образом, клетка обладает рядом жизненных свойств: обменом веществ, раздражимостью, ростом и размножением, подвижностью, на основе которых осуществляется функции целого организма.

Белок, по-другому называют также протеин, считается наряду с жирами и углеводами главным веществом нашего организма, без которого дальнейшее существование живых существ невозможно. В организме он выполняет разнообразные функции, начиная от формирования структуры клеток и заканчивая защитой организма от инфекции и образование энергии.

Что же такое белок и каковы его задачи и функции?

Белок представляет собой высокомолекулярное соединение из аминокислот. В организмах живых существ аминокислотный состав белков определяется генетическим кодом, при синтезе принимают участие в основном 20 стандартных аминокислот.

Организм получает его из продуктов питания, который в процессе пищеварения разрушается пищеварительными ферментами до аминокислот, которые в дальнейшем участвуют в строительстве необходимых организму собственных белков или подвергаются дальнейшему распаду с образованием энергии.

В нашей статье мы не будем подробно углубляться в курс биохимии и останавливаться на химической структуре белков и их классификации, а рассмотрим основные моменты, необходимые для понимания их значения для человека.

Немного из истории.

Еще в 18 веке белки были выделены в отдельный класс биологических молекул в результате проведенных работ французского химика Антуана де Фуркруа, который обнаружил свойства белков к денатурации (сворачиванию) под воздействием нагревания или кислот. В те времена были изучены белок альбумин (из яиц), фибрин (из крови) и глютен (из пшеницы).

В начале 19 века химиками было обнаружено, что при распаде (гидролизе) белков образуются аминокислоты, некоторые из них (глицин и лейцин) были охарактеризованы уже в то время. В середине 19 века голландский химик Геррит Мульдер на основании проведенного им химического анализа белков выдвинул теорию, согласно которой практически все белки имеют сходную первичную химическую единицу-протеин, а свою теорию он назвал “теория протеина”.

Согласно ей, каждый белок состоит из нескольких протеиновых единиц, серы и фосфора. В дальнейшем она подвергалась множественной критике по мере изучения и в 1880-х годах русский ученый А.Я. Данилевский отметил существование пептидных групп CO-NH в молекуле белка. Это помогло в начале 20-го века немецкому ученому Эмилю Фишеру доказать теорию, что в состав белков входят аминокислоты, соединенные между собой пептидной связью. Так была представлена первичная структура белка.

Но биологическое значение белка для организма была доказана лишь в 1926 году американским химиком Джеймсом Самнером, которые доказал, что фермент уреаза является белком. В ходе дальнейших исследований ученым удалось представить миру также вторичную, третичную и четвертичную структуры белка и доказать, что белок представляет собой именно последовательность соединенных аминокислот, а не разветвленную из них цепь. На момент 2012 года банк данных об этих веществах содержал в себе информацию о 87000 структур, исследования которых продолжаются до сих пор.

Аминокислоты — основа белка.

Как мы уже говорили выше, белки состоят из аминокислот. Аминокислоты представляют собой связь из углерода, водорода, кислорода и азота. К молекуле некоторых аминокислот присоединяется еще и сера. В природе существует более 100 различных аминокислот, из которых человеком используется только 20, кодируемые генетическим кодом. Ученые обозначают их как «протеиновые” аминокислоты. Некоторые из этих аминокислот человек может продуцировать сам, а другие должен получать из продуктов питания каждый день, поскольку он не может сам их производить и они являются для него жизненно необходимыми.

Таким образом, исходя из этого, все аминокислоты делятся на заменимые и незаменимые. Первые человеческий организм синтезирует сам, а вторые получает из продуктов питания. Еще выделяют условно-заменимые аминокислоты, которые могут синтезироваться в организме лишь при достаточном количестве других аминокислот.

К незаменимым аминокислотами относятся:

  • -изолейцин,
  • -лейцин,
  • -лизин,
  • -валин,
  • -метионин,
  • -фенилаланин,
  • -треонин,
  • -триптофан.

К заменимым аминокислотам относят глицин, аланин, серин, пролин, цистеин, аспартат, аспарагин, глутамин, тирозин. Из них тирозин и цистеин являются условно заменимыми и зависят от наличия определенных незаменимых аминокислот, например, фенилаланина. Наряду с этим есть еще полу-незаменимые аминокислоты, которые организм потребляет при определенных жизненных условиях (беременность, рост) - аргинин и гистидин.

Одна аминокислота называется пептид, связь между собой 2 аминокислот называют в химии дипептид, связь 3-х аминокислот именуют трипептидом, а связь из 3-100 аминокислот представляет собой уже маленький белок. Пептиды выполняют в человеческом организме важные функции: они могут действовать как гормоны и быть важными для обмена веществ. Каждый же белок в разрезе состоит из 100-800 последовательно соединенных между собой аминокислот. Отдельные цепи аминокислот могут иметь неоднократные повторения и при этом могут возникать очень много различных белков-в зависимости от того, какие и как много аминокислот принимают участие.

Основные важные функции белков.

Функции белков в организме различны и поэтому выделяют различные их виды:

— структурные — определяют форму клеток, а тканям дает их прочность. Типичными представителями являются белок кератин (составляет волосы и ногти), коллаген (определяет структуру соединительной ткани и хрящей), эластин (придает эластичность кровеносным сосудам).

— сократительные -к ним относятся актин и миозин. Эти белки заботятся о том, чтобы мышцы могли сокращаться. Без этих белков человек не может двигаться.

— белки “склада” — человеческий организм использует их для того, чтобы запасать определенные вещества. Так, например, без ферритина он не может запасать железо. В экстремальных ситуациях организм может использовать их как источник энергии.

— транспортные — важнейшие участники, которые определяют транспорт веществ в организме. Они, наподобие автомобиля, транспортируют кислород, жиры, лекарства и различные вещества к пунктам их назначения, в основном, к органам и тканям. Без них обменные процессы невозможны. Основными представителями транспортных белков являются альбумин, гемоглобин и миоглобин.

— защитные -отвечают за наш иммунитет. Когда в организм проникают возбудители заболевания, он начинает от них защищаться с помощью специальных белков, которые называются антитела. Кроме того, защитную функцию оказывает и белок фибриноген. Если человек ранен, организм превращает фибриноген в фибрин, который как решетка ложится на рану, и на ней оседают тромбоциты, формируя тромб и таким образом останавливая кровотечение.

Гормоны — содержатся в большинстве гормонов, которые управляют в организме важными процессами.

Рецепторы — располагаются на поверхности клеток и реагируют на присоединение к ним химических веществ, например, лекарств. Они передают сигнал клеткам и таким образом оказывается эффект.

Итак, из всего вышеперечисленного, становятся понятны основные функции белков в организме человека: структурная, защитная, транспортная, сократительная, гормональная, ферментативная, рецепторная, а также функция хранения.

Ежедневная потребность в белке.

Человеческий организм может хранить белок лишь в незначительных количествах, основным же источником его источником на каждый день являются продукты питания. Ежедневная потребность в нем индивидуальна для каждого человека и зависит от возраста, подвижности и массы тела.

На основании множества проведенных исследований, ученые пришли к выводу, что ежедневная потребность в белках в среднем составляет 0,8 г на килограмм массы тела. Это среднее значение подходит как взрослым обоих полов, так и детям от 0 до 18 лет. Так, например, человек с массой тела 60 кг должен ежедневно потреблять почти 48г белка, а для человека с массой тела 70 кг среднесуточная потребность в белках составляет уже почти 56г. Это количество, к примеру, содержится в 250 г нежирного мяса.

Тем не менее, существуют люди, потребность в белке у которых выше, чем у обычных людей. К ним относятся беременные и женщины, кормящие грудью. У этих людей ежедневная потребность на 10-15 г выше рекомендованной среднесуточной дозы. Так, беременные женщины с массой тела 65 кг должны между 62 г (65*0,8+10) или 67 г (65*0,8+15) белка в день принимать.

В любом случае повышенную потребность в белках имеют женщины и дети, причем их потребность начиная с рождения и до 6 лет постоянно идет на убыль. Силовые спортсмены часто ошибочно считают, что потребление протеиновых коктейлей позволит им в короткие сроки нарастить мышечную массу, что является ошибочным - мышцы от этого не растут быстрее. Только сбалансированное питание позволяет покрыть ежедневную потребность в белке.

Для того, чтобы организм снабдить достаточным количеством аминокислот, которые он не может самостоятельно продуцировать, наряду с количеством важен также и состав белков. Ниже мы приведем минимальную ежедневную потребность для отдельных аминокислот:

  • -изолейцин-0,7г,
  • -лейцин-1,1г,
  • -лизин-0,8г,
  • -метионин-1,1г,
  • -фенилаланин-1,1г,
  • -треонин-0,5г,
  • -триптофан-0,25г,
  • -валин-0,05г,
  • -цистеин-зависит от метионина,
  • -тирозин-зависит от фенилаланина,
  • -аргинин-необходим только в грудном возрасте.

Некоторые продукты питания содержат больше аминокислот, другие содержат их меньше. Поэтому для того, чтобы покрыть ежедневную потребность, человек должен употреблять больше белоксодержащих продуктов питания.

Продукты питания, богатые белками.

Как мы уже говорили, белоксодержащие продукты питания обеспечивают организм важными аминокислотами, прежде всего теми, которые человек не может сам вырабатывать. Белки находятся в продуктах животного и растительного происхождения. Рыба, мясо, яйца, молоко-все они содержат большое его количество. Кроме того, в продуктах животного происхождения находятся также и жиры, преимущественно насыщенные жирные кислоты, поэтому лучше обращайте внимание на их содержание в продуктах и по возможности употребляйте нежирные продукты, например, домашнюю птицу.

Также еще есть растительные продукты питания, содержащие белок. К ним относятся прежде всего картофель, зерновые культуры, соя, а также стручковые плоды, например, горох и бобы.

В разговорах про белок люди обычно представляют себе яйцо как наиболее богатый его источник, но это не так. Существуют продукты, которые им гораздо богаче (из расчета на 100г продукта):

  • -сыр пармезан-36г,
  • -соевые бобы-34г,
  • -свиной шницель-31г,
  • -шницель из мяса индейки-30г,
  • -арахис и другие орехи-26г,
  • -различные сыры-25г,
  • -чечевица-24г,
  • -стручковые плоды-24г,
  • -горох-23г,
  • — рыба-22г,
  • -говяжье мясо-22г,
  • -тунец-22г,
  • -лосось-20г,
  • -фисташки-19г,
  • -кешью-19г,
  • -киноа-14г,
  • -макароны сырные-12г,
  • -творог-12г,
  • -свежий сыр-10г,
  • -куриное яйцо-9г,
  • -молоко-3г.

Для легкого счета полезно знать, что:

  • -1 порция приготовленного мяса содержит 52г белка,
  • -1 порция тунца (150г) содержит 31г,
  • -1 горстка арахиса (25г) содержит 13г,
  • -отварной горох (200г) содержит 10г,
  • -1 вареное куриное яйцо (60г) содержит 7г,
  • -1 ст. ложка сыра пармезан (20г) содержит 7г,
  • -1 стакан молока (200мл) содержит 6г,
  • -1 порция йогурта (150г) содержит 4г.

Необходимо помнить, что напитки и фруктовые соки не содержат никакого белка вообще! Конечно же предпочтительней для человека белок животного происхождения, поскольку он имеет похожую структуру и биологическую значимость.

Дефицит белка — от чего он зависит?

Дефицит белка при нормальном питании встречается крайне редко. Но все же такое состояние может возникнуть в случаях:

Недостаточное поступление белка в организм в результате соблюдения слишком жесткой диеты или же при ряде состояний, например, сужении пищевода, когда пища не проходит и человек не может нормально питаться,

Заболевания желудочно-кишечного тракта, когда нарушены процессы переваривания пищи и ее всасывания в кишечнике (болезнь Крона, неспецифический язвенный колит, атрофия слизистой оболочки желудочно-кишечного тракта),

Когда существуют большие потери белка в результате повышенного распада тканей или же повышенная в нем потребность, которые не компенсируются приемом пищи. Такое встречается, например, при онкологических процессах, тяжелых инфекционных процессах, тяжелых ранениях и обширных ожогах, септических состояниях,

Нарушение нейроэндокринной регуляции.

Также потребление белка меньше 0,4-0,6г на кг массы тела приведет к его дефициту, который сперва отразится на снижении умственной и физической работоспособности. В дальнейшем ослабляется иммунная система, что представляет риск для развития инфекционных заболеваний. При резко выраженном дефиците белка наблюдаются истощение, эластичность кожи снижается, плохо заживают раны, волосы и ногти становятся ломкими, наблюдаются белковые отеки рук и ног, или же всего тела.

В любом случае при появлении соответствующих жалоб и симптомов Вам лучше обратиться к врачу! Если Вы соблюдаете диету и проявление дефицита белка не слишком выражено, тогда Вам необходимо отказаться от диеты и увеличить потребление белка. Во всех остальных случаях Вам понадобится медицинская помощь.

Повреждает ли белок почки?

Многие люди употребляют больше белка, чем им необходимо для нормального существования. Для здорового организма это в принципе не вредно для здоровья. Организм перерабатывает лишний белок в жир или сахар. Конечным продуктом этих процессов является мочевина, которую организм выделяет с мочой. При нормальном питании в день выделяется почти 13-33г мочевины.

Если же работа почек нарушена, то мочевина с мочой не выходит, а остается в крови, вызывая соответствующие симптомы- головокружение, тошнота, рвота, общая слабость, боли в животе. Поэтому люди, которые страдают заболеванием почек, должны в первую очередь посоветоваться с врачом по поводу того, сколько в день им необходимо употреблять белка, чтобы не ухудшить свое состояние. Если же с почками все в порядке, то мочевина просто выйдет с мочой.

Но все же вопрос о том, разрушает ли белок почки, до сих пор остается спорным и ученые не могут на него ответить однозначно.

Азотистый баланс — положительный и отрицательный.

Говоря о белках, нельзя не остановиться на азотистом балансе. Азотистый баланс представляет собой соотношение количества азота, поступившего в организм, и количества азота, выведенного из организма.

Поскольку основным источником азота является белок, то под азотистым балансом можно понимать соотношение поступившего и разрушенного белка.

В норме в природе существует равновесие и человеческий организм к нему стремиться (гомеостаз). То есть количество потребленного белка равно количеству разрушенного белка. Это то состояние, когда с вашим организмом ничего не происходит, он не худеет, но и не полнее.

Если же количество потребляемого азот выше, чем количество выделенного из организма, то говорят о положительном азотистом балансе. Т.е. процессы образования белка (анаболизм) преобладает над процессом его разрушения (катаболизм). Такое встречается при росте человека, когда увеличивается его мышечная масса.

Если же, наоборот, количество выделенного из организма азота превышает количество им потребляемого, то говорят об отрицательном азотистом балансе. Это говорит о том, что процессы разрушения белка преобладают над процессами его образования. Такая ситуация встречается при активном похудении, малом потреблении белка, онкологических процессах, нарушениях работы желудочно-кишечного тракта.

Для нормальной жизнедеятельности среднесуточная потребность в азоте составляет 105мг на килограмм массы тела независимо от возраста и пола.

Как видите, белок является незаменимым строительным материалом для нашего организма, без которого нормальное существование человека невозможно. Поэтому не экономьте на себе и правильно питайтесь.

Берегите себя и будьте здоровы!

Белок: Строительный материал для нашего организма.

5 (100%) 1 голос[ов]

Вконтакте

Цветник