Сточные воды ТЭС. Расход воды на ТЭС

Загрязненные сточные воды ТЭС и их водоподготовительных установок состоят из различных по количеству и качеству потоков. В их состав входят (в порядке убывания количества):

а) сточные воды как оборотных, так и прямоточных (разомкнутых) систем гидрозолошлакоудаления (ГЗУ) электростанций, работающих на твердом топливе;

б) продувочные воды оборотных систем водоснабжения ТЭС, сбрасываемые постоянно;

в) сточные воды водоподготовительных (ВПУ) и конденсатоочистительных (КОУ) установок, сбрасываемые периодически, в том числе: пресные, зашламленные, засоленные, кислые, щелочные, замасленные и замазученные воды главного корпуса, мазутного и трансформаторного хозяйства ТЭС;

г) продувочные воды паровых котлов, испарителей и паропреобразователей, сбрасываемые постоянно;

д) замасленные и зашламленные снеговые и дождевые стоки с территории ТЭС;

е) обмывочные воды РВП и поверхностей нагрева котлов (стоки от РВП котлов, работающих на мазуте, сбрасываются 1-2 раза в месяц и реже, а от других поверхностей и при сжигании твердых топлив - чаще);

ж) замасленные, загрязненные внешние конденсаты, пригодные после их очистки для питания паровых котлов-испарителей;

з) сбросные, отработанные, концентрированные, моющие кислые и щелочные растворы и отмывочные воды после химических промывок и консервации паровых котлов, конденсаторов, подогревателей и другого оборудования (сбрасываются несколько раз в год, обычно летом);

и) воды после гидроуборки топливных цехов и других помещений ТЭС (сбрасываются обычно 1 раз в сутки в смену, чаще днем).

Взаимосвязь между свежими и сточными водами тэс

На ТЭС должны существовать единая система водоснабжения - водоотведения, при которой сбросные воды одного типа непосредственно или после некоторой обработки могли бы быть исходными для других потребителей той же ТЭС (или внешних). Например, сбросные воды прямоточных систем водоснабжения после конденсаторов, а также продувочные воды оборотных систем при небольшом (в 1,3-1,5 раза) их упаривании, а также загрязненным нефтью сточные воды ТЭЦ могут являться исходной водой ВПУ, равно как и последние порции отмывочной воды обессоливающих фильтров.

Все возвращаемые в «голову» процесса сбросные воды не должны нуждаться в обработке реагентами на предочистке, в случае же необходимости обработки известью, содой и коагулянтом они должны перемешиваться (усредняться) в сборном баке. Вместимость этого бака должна быть рассчитана на сбор 50 % всех сточных вод ВПУ за сутки, в том числе 30 % сточных вод ионитной части. Нежелательно смешивать прозрачные мягкие и шламовые сбросные воды. Следует учитывать, что не менее 50 % всех сбросных вод ВПУ, в том числе все сточные воды предочисток всех типов, включая сбросные воды после взрыхления ионитных фильтров пресной водой, последние порции отмывочной воды ионитных фильтров обессоливающих установок, а также воды, сбрасываемые при опорожнении осветлительных и ионитных фильтров, имеют солесодержание, жесткость, щелочность и другие показатели такие же или даже лучшие, чем предочищенная и тем более исходная вода, и поэтому могут быть без дополнительной обработки реагентами возвращены в «голову» процесса, в осветлители или, что еще лучше, на осветлительные, Н- или Na-катионитные фильтры.

Кроме единой общей канализации для всех видов пресных вод ВПУ должны иметься и отдельные сбросные каналы для засоленных и кислых вод (щелочные должны полностью использоваться в цикле, в том числе для нейтрализации). Эти воды нужно собирать в специальные баки-котлованы.

Ввиду периодической работы земляных котлованов (преимущественно в летнее время) для моющих растворов и отмывочных вод котлов после химических промывок, после установок для нейтрализации этих вод и обмывочных вод РВП следует предусматривать возможность подачи на эти сооружения различных сбрасываемых кислых, щелочных и засоленных вод ВПУ для совместной или попеременной нейтрализации, отстаивания, окисления и передачи их в систему ГЗУ или другим потребителям. При получении из обмывочных вод РВП окиси ванадия эти воды до выделения ванадия с другими не смешивают. При этом нейтрализованная установка или, по крайней мере, ее насосы и арматура должны размещаться в утепленном помещении.

Засоленные воды после Na-катионитных фильтров делят на три части по их качеству и используют по-разному.

Концентрированный отработавший раствор соли, содержащий 60-80 % удаленной жесткости при 50-100 %-ном избытке соли и составляющий 20-30 % общего объема засоленных вод, должен направляться в систему ГЗУ или на умягчение с возвратом на ВПУ, или на выпаривание с получением твердых солей Са, Mg, Na, CI, S0 4 , или в земляные котлованы, откуда после смешения с другими стоками, разбавления и совместной нейтрализации его можно направлять в канализацию, на нужды ТЭС или внешним потребителям. Вторая часть отработавшего раствора, содержащая 20-30 % всей удаляемой жесткости при 200-1000 %-ном избытке соли, должна собираться в бак для повторного использования. Третья, последняя часть - отмывочная вода - собирается в другой бак для использования при взрыхлении, если ее еще нельзя направить в «голову» процесса или для первой стадии отмывки.

Концентрированные засоленные воды после Na-катионитных фильтров и нейтрализованные воды Н-катионитных и анионитных фильтров (первые порции) можно подавать в системы ГЗУ для транспортировки золы и шлака. Накопление в воде ГЗУ Са(ОН) 2 , CaS0 4 приводит к насыщению и пересыщению воды этими соединениями с выделением их в твердом виде на стенках труб и оборудования. Масла и нефтепродукты из сточных вод, оставшиеся в них после нефтеловушек, при сбросе их в систему ГЗУ сорбируются золой и шлаком. Однако при большом содержании нефтепродуктов они могут сорбироваться не полностью и находиться на золоотвалах в виде плавающих пленок. Для предотвращения попадания их с сбрасываемой водой в водоемы общего пользования на золоотвалах сооружаются приемные колодцы для сбросных вод с затворами («запанями») для задержки плавающих нефтепродуктов.

Мягкие щелочные, иногда горячие продувочные воды паровых котлов, испарителей, паропреобразователей после использования их выпара и теплоты, а также мягкие щелочные отмывочные воды анионитных фильтров могут служить питательной водой менее требовательных паровых котлов, а также (при отсутствии в теплофикационной системе теплообменников с латунными трубами) подпиточной водой закрытых систем теплоснабжения. При содержании в них фосфатов Na 3 P0 4 в количестве более 50 % общего солесодержания их можно использовать для стабилизационной обработки оборотной воды, а также для растворения соли с целью умягчения ее раствора содержащимися в продувочной воде щелочами и фосфатами.

При выборе способа обработки засоленных, кислых или щелочных вод после регенерации ионитных фильтров следует учитывать резкие колебания концентраций растворимых веществ в этих водах: максимальные концентрации в первых 10-20 % общего объема сбрасываемой воды (собственно отработанные растворы) и минимальные концентрации в последних 60-80% (отмывочные воды). Такие же колебания концентрации отмечаются и в отработанных растворах и отмывочных водах после химических промывок паровых и водогрейных котлов и других аппаратов.

В то время как отмывочные воды с небольшой концентрацией растворимых веществ сравнительно легко могут быть нейтрализованы (взаимно), окислены и вообще очищены от удаляемых загрязнений, очистка большого объема более концентрированной смеси отработанных растворов и отмывочных вод требует больших объемов оборудования, значительных затрат труда, средств и времени.

Отработанные щелочные растворы и отмывочные воды после регенерации анионитных фильтров (кроме первой порции раствора после фильтров 1-й степени) должны быть повторно использованы внутри ВПУ. Первая же порция направляется на нейтрализацию кислых сбросных вод ВПУ, и ТЭС.

Схема бессточной ТЭС

На рис. 13.18 в качестве примера приведена схема бессточного водоснабжения ТЭС, работающей на угле. Зола и шлак из котлов подаются на золоотвал 1. Осветленная вода 2 с золоотвала возвращается в котлы. При необходимости часть этой воды подвергается очистке на установке локальной очистки 3. Образующиеся при этом твердые отходы 4 подаются на золоотвал 1. Частично обезвоженные зола и шлак утилизируются. Возможно также сухое шлакозолоудаление, что упрощает утилизацию золы и шлака.

Дымовые газы 5 котлов проходят очистку в установке десульфуризации газов 6. Образующиеся сточные воды очищаются по технологии с использованием реагентов (извести, полиэлектролитов). Очищенная вода возвращается в систему газоочистки, а образовавшийся гипсовый шлам вывозится на переработку.

Сточные воды 7, образующиеся при химических промывках, консервации оборудования и обмывке конвективных поверхностей нагрева котлов, подаются в соответствующие установки по очистки 8, где обрабатываются с использованием реагентов по одной из описанных ранее технологий. Основная часть очищенной воды 9 используется повторно. Ванадий содержащий шлам 10 вывозится на утилизацию. Осадки 11, образовавшиеся при очистке сточных вод, вместе с частью воды подаются на золоотвал 1 либо складируются в специальных шламонакопителях. В то же время, как показал опыт работы Саранской ТЭЦ-2, при подпитке котлов дистиллятом МИУ эксплуатационная очистка котлов практически не нужна. Следовательно, сточные воды такого типа будут практически, отсутствовать либо их количество будет незначительным. Аналогичным образом утилизируется вода от консервации оборудования, либо применяются методы консервации, не сопровождающиеся образованием сточных вод. Часть этих сточных вод после обезвреживания может равномерно подаваться на ВПУ для обработки совместно с продувочными водами 12 СОО (системы оборотного охлаждения).

Исходная вода непосредственно либо после соответствующей обработки на ВПУ подается в СОО. Необходимость обработки и ее вид зависят от конкретных условий работы ТЭС, в том числе от состава исходной воды, необходимой степени ее упаривания в СОО, типа градирен и др. С целью сократить потери воды в СОО градирни могут быть оборудованы каплеуловителями либо применены полусухие или сухие градирни. Вспомогательное оборудование 13, при охлаждении которого возможно загрязнение оборотной воды нефтепродуктами и маслами, выделено в самостоятельную систему. Вода этой системы подвергается локальной очисткеот нефтепродуктов и масла в узле 14 и охлаждается в теплообменниках 15 водой 16 из основного контура СОО охлаждения конденсаторов турбин. Часть этой воды 17 используется для восполнения потерь в контуре охлаждения вспомогательного оборудования 13. Выделенные в узле 14 масло- и нефтепродукты 18 подаются на сжигание в котлы.

Часть воды 12, подогретой в теплообменниках 15, направляется на ВПУ, а ее избыток 19 - на охлаждение в градирни.

Продувочная вода 12 СОО проходит обработку на ВПУ по технологии, с использованием реагентов. Часть умягченной воды 20 подается на подпитку закрытой теплосети перед подогревателями 21 сетевой воды. При необходимости часть умягченной воды может быть возвращена в СОО. Необходимое количество умягченной воды 22 направляется в МИУ. Сюда же подаются продувки 23 котлов, а также конденсат 24 с мазутного хозяйства непосредственно либо после очистки в узле 25. Выделенные из конденсата нефтепродукты 18 сжигаются в котлах.

Пар 26 первой- ступени МИУ подается на производство и в мазутное хозяйство, а полученный дистиллят 27 поступает на подпитку котлов. Сюда же подается конденсат с производства и конденсат сетевых подогревателей 21 после обработки в конденсатоочистке (КО). Сточные воды 28 КО и блочной обессоливающей установки БОУ используются в ВПУ. Сюда же подается продувочная вода 29 МИУ для приготовления регенерационного раствора по описанной ранее технологии.

Ливневые стоки с территории ТЭС собираются в накопителе ливне стоков 30 и после локальной очистки в узле 31 также подаются в СОО либо на ВПУ. Выделенные из воды нефте- и маслопродукты 18 сжигаются в котлах. В СОО могут также подаваться грунтовые воды без или после соответствующей обработки.

При работе по описанной технологии в значительных количествах будет образовываться известковый и гипсовый шлам.

Перспективны два направления создания бессточных ТЭС:

Разработка и внедрение экономичных и экологически совершенных инновационных технологий подготовки добавочной воды парогенераторов и подпиточной воды теплосети;

Разработка и внедрение инновационных нанотехнологий максимально полной переработки и утилизации образующихся сточных вод с получением и повторным использованием в цикле станции исходных химических реагентов.

Рисунок 13. Схема ТЭС с высокими экологическими показателями

За рубежом (особенно в США) в связи с тем, что лицензия на работу электростанции выдается зачастую при условии полной бессточности, схемы водоподготовки и очистки стоков взаимоувязаны и представляют собой комбинацию мембранных методов, ионитного и термического обессоливания. Так, например, технология подготовки воды на электростанции Норт-Лейк (Техас, США) включает в себя две параллельно работающие системы: коагуляция сульфатом железа, многослойная фильтрация, далее обратный осмос, двойной ионный обмен, ионный обмен в смешанном слое или электродиализ, двойной ионный обмен, ионный обмен в смешанном слое.

Подготовка воды на ядерной станции Брайдвуд (Иллинойс, США) представляет собой коагуляцию в присутствии хлорирующего агента, известкового молока и флокулянта, фильтрацию на песчаном или активноугольном фильтрах, ультрафильтрацию, электродиализ, обратный осмос, катионообменный слой, анионообменный слой, смешанный слой.

Анализ технологий, реализуемых для переработки высокоминерализованных сточных вод на отечественных электростанциях, позволяет утверждать, что полная утилизация осуществима только путем испарения в различных типах испарительных установок. При этом получают в качестве продуктов, пригодных к дальнейшей реализации – шлам осветлителей (в основном – карбонат кальция), шлам на гипсовой основе (в основном – двухводный сульфат кальция), хлорид натрия, сульфат натрия.

На Казанской ТЭЦ-3 создан замкнутый цикл водопотребления путем комплексной переработки высокоминерализованных сточных вод термообессоливающего комплекса с получением регенерационного раствора и гипса в виде товарного продукта. При работе по этой схеме образуется избыточное количество продувочной воды испарительной установки в объеме около 1 м³/ч. Продувка представляет собой концентрированный раствор, в котором в основном содержатся катионы натрия и сульфат-ионы.

Рисунок 14. Технология переработки стоков термообессоливающего комплекса Казанской ТЭЦ-3.

1, 4 – осветлители; 2, 5 – баки осветленной воды; 3, 6 – механические фильтры; 7 – натрий-катионитовые фильтры; 8 – бак, химочищенной воды; 9 – химочищенная вода на подпитку теплосети; 10 – бак концентрата испарительной установки; 11 – бак-реактор; 12, 13 – баки различного назначения; 14 – бак осветленного раствора для регенерации (после подкисления и фильтрации) натрий-катионитовых фильтров; 15 – кристаллизатор; 16 – кристаллизатор-нейтрализатор; 17 – термохимический умягчитель; 19 – бункер; 20 – приямок; 21 – избыток продувки испарителя; 22 – фильтр с активноугольной загрузкой; 23 – электромембранная установка (ЭМУ).

Разработана инновационная нанотехнология переработки избытка продувочной воды термообессоливающего комплекса на базе электромембранной установки с получением щелочи и умягченной воды. Сущность электромембранного метода заключается в направленном переносе диссоциированных ионов (растворенных в воде солей) под влиянием электрического поля через селективно проницаемые ионообменные мембраны.

Теплоэнергетика - отрасль, вносящая существенный вклад в загрязнение природной среды. Степень вреда сточных вод тепловых электростанций для окружающей среды зависит от многих факторов, главный из которых - химический состав сбрасываемых сточных вод. Наиболее опасными для природных водоемов считаются сбросы, содержащие масло- и нефтепродукты , а также тяжелые металлы . Для этих загрязнителей предусматриваются жесткие нормативы по остаточным концентрациям, что требует серьезного отношения к технологиям очистки промышленных сточных вод .

Ввод в действие современных и усовершенствованных технологий водоочистки одновременно решает следующие задачи:

  • Реализация процессов умягчения , обезжелезивания и очистки производственного конденсата.
  • Очистка отработанных отмывочных и моющих растворов, содержащих едкие и концентрированные соединения (кислоты, щелочи), в том числе растворов для промывки паровых котлов.
  • Очистка замасленных технических вод, подвергающихся сбросу.
  • Очистка и отделение шламов и масел от ливневых и талых сточных вод , собранных с территории предприятия.

Поэтапная технология очистки сточных вод на предприятиях теплоэнергетики включает в себя следующие процессы:

  1. Механическая очистка для удаления из воды крупных частиц, всплывающих и легко осаждаемых взвесей.
  2. Этап физико-химической очистки - служит для удаления частично растворенных, эмульгированных и взвешенных в объеме воды загрязняющих веществ.
  3. Глубокая очистка (доочистка) . Степень эффективности этого этапа очистки зависит от санитарно-гигиенических требований к стокам и категории водоема, куда осуществляется сброс очищенной воды. Требования к очистке оборотной воды обуславливаются технологией.

Как можно судить из практического опыта, в настоящее время для очистки сточных вод теплоэнергетики по большей части используют традиционные методы, не позволяющие добиться высокой степени чистоты сточной воды. Очистные сооружения работают по принципам механической и химической очистки, а новые эффективные методы почти нигде не внедряются из-за высоких затрат по модернизации и переоборудованию очистных сооружений.

К факторам, негативно влияющим на процессы очистки сточной воды, относят:

  • длительный срок эксплуатации очистных сооружений;
  • физическое и моральное старение оборудования, накопление изношенности техники;
  • малоэффективные, устаревшие технологии очистки;
  • нарушения режима эксплуатации водоочистных комплексов;
  • большие нагрузки на очистные сооружения, превышающие их проектные показатели;
  • недофинансированность и несвоевременность ремонтных работ;
  • нехватка и низкая квалификация обслуживающего персонала.

Одно из неприятных последствий неэффективной работы промышленной водоочистки - превышение допустимой нагрузки на городские системы биологической очистки. Решение этих сопряженных проблем требует новых технологий, строительства или глубокой модернизации существующих очистных сооружений.

Новые системы водоочистки необходимо проектировать по принципу модульности. Модульные очистные системы позволят создать очистной комплекс, который будет наилучшим образом подходить под параметры сточной воды (расход, химический состав, степень загрязненности) и соответствовать требованиям к очищенным сточным водам в месте сброса.

Argel

(Cкачать работу)

Функция "чтения" служит для ознакомления с работой. Разметка, таблицы и картинки документа могут отображаться неверно или не в полном объёме!


Сточные воды ТЭС и их очистка 1. Классификация сточных вод ТЭС Эксплуатация тепловых электрических станций связана с использованием большого количества воды. Основная часть воды (более 90%) расходуется в системах охлаждения различных аппаратов: конденсаторов турбин, масло- и воздухоохладителей, движущихся механизмов и др.

Сточной водой является любой поток воды, выводимый из цикла электростанции.

К сточным, или сбросным, водам кроме вод систем охлаждения относятся: сбросные воды систем гидрозолоулавливания (ГЗУ), отработавшие растворы после химических промывок теплосилового оборудования или его консервации: регенерационные и шламовые воды от водоочистительных (водоподготовительных) установок: нефтезагрязненные стоки, растворы и суспензии, возникающие при обмывах наружных поверхностей нагрева, главным образом воздухоподогревателей и водяных экономайзеров котлов, сжигающих сернистый мазут.

Составы перечисленных стоков различны и определяются типом ТЭС и основного оборудования, ее мощностью, видом топлива, составом исходной воды, способом водоподготовки в основном производстве и, конечно, уровнем эксплуатации.

Воды после охлаждения конденсаторов турбин и воздухоохладителей несут, как правило, только так называемое тепловое загрязнение, так как их температура на 8…10 °С превышает температуру воды в водоисточнике. В некоторых случаях охлаждающие воды могут вносить в природные водоемы и посторонние вещества. Это обусловлено тем, что в систему охлаждения включены также и маслоохладители, нарушение плотности которых может приводить к проникновению нефтепродуктов (масел) в охлаждающую воду. На мазутных ТЭС образуются сточные воды, содержащие мазут.

Масла могут попадать в сточные воды также из главного корпуса, гаражей, открытых распредустройств, маслохозяйств.

Количество вод систем охлаждения определяется в основном количеством отработавшего пара, поступающего в конденсаторы турбин. Следовательно, больше всего этих вод на конденсационных ТЭС (КЭС) и АЭС, где количество воды (т/ч), охлаждающей конденсаторы турбин, может быть найдено по формуле Q=KW где W - мощность станции, МВт; К-коэффициент, для ТЭС К= 100…150: для АЭС 150…200.

На электростанциях, использующих твердое топливо, удаление значительных количеств золы и шлака выполняется обычно гидравлическим способом, что требует большого количества воды. На ТЭС мощностью 4000 МВт, работающей на экибастузском угле, сжигается до 4000 т/ч этого топлива, при этом образуется около 1600…1700 т/ч золы. Для эвакуации этого количества со станции требуется не менее 8000 м3/ч воды. Поэтому основным направлением в этой области является создание оборотных систем ГЗУ, когда освободившаяся от золы и шлака осветленная вода

Очистка мазутсодержащих сточных вод ТЭС

В.И. Аксенов, И.И. Ничкова, Л.И. Ушакова, Н.Э. Вовненко (УрФУ),

В.А. Никулин, С.С. Пецура (ЗАО «Химические системы»)

Нефть и нефтепродукты, попадая в водные источники, наносят им существенный вред. Очистка воды от этих загрязнений сопряжена со значительными техническими трудностями и затратами. Имеются подобные стоки и на ТЭС, где одной из категорий органосодержащих стоков являются сбросные воды мазутных хозяйств. Их количество невелико (от 3 до 10 м 3 /ч), температура выше исходной, возможны залповые попадания мазута. Химический состав практически не меняется. Возможно использование вод после удаления мазута в отстойниках-ловушках в зависимости от эффективности удаления мазута. Остановимся подробнее на этой проблеме. Технически проблема очистки этих видов сточных вод в основном решена; существуют типовые очистные сооружения, широко применяемые на действующих ТЭС. Используется многоступенчатая обработка:

    нефтеловушки различного типа; флотаторы – напорные и безнапорные; фильтрование через кварцевый песок и антрацит; доочистка на сорбционных (загруженных активированным углём) или намывных (вспученный перлит, угольная пыль и их смесь) фильтрах.
В настоящее время отделение нефтепродуктов осуществляется также методом флокулирования, для чего чаще всего используют катионные флокулянты отечественного и зарубежного производства: отечественные – ВПК-402, Флокатан, КФ и др.; зарубежные – Праестолы 611, 650, 655, 853 и др. Иногда для удаления нефтепродуктов можно использовать коагулянты, а также более сложную обработку:
    коагулирование и флокулирование; коагулирование, флокулирование катионным флокулянтом, флокулирование анионным флокулятном (т.е. процесс перефлокуляции).
Степень очистки достигает 95 % и мало зависит от исходной концентрации нефтепродуктов, т.е. для получения остаточной концентрации 0,05 мг/кг (ПДК для рыбохозяйственных водоёмов) на очистку должны поступать сточные воды с концентрацией не более 1 мг/кг, которая практически не встречается в условиях работы ТЭС. При исходной концентрации более 2 мг/кг остаточную концентрацию можно снизить до 0,3-1,0 мг/кг и очищенную воду использовать повторно вместе с исходной водой, особенно при использовании, как уже отмечалось, систем известкования и коагуляции. На основании вышесказанного, была поставлена задача экспериментальной отработки технологии доочистки замазученного стока методом реагентной обработки, как не требующей сложного габаритного оборудования, экономичной и легко встраиваемой в существующую технологическую схему очистки. Для опытов использовался натурный мазутсодержащий сток мазутного хозяйства ТЭС. Всего было предоставлено три пробы по 10 литров с содержанием мазута – 1,91 мг/дм 3 ; 1,28 мг/дм 3 ; 1,4 мг/дм 3 соответственно. Предварительно было проведено несколько серий опытов по подбору реагентов и оптимальных параметров эксперимента. По результатам редварительных опытов была принята следующая методика. В цилиндр наливалось 0,5 литра исходного мазутсодержащего стока, в который дозировались необходимые реагенты:
    коагулянт и щелочь; коагулянт, щелочь и флокулянт (анионный); коагулянт, щелочь, флокулянт (анионный) и флокулянт (катионный).
В качестве коагулянта использовался Аl 2 (SO 4) 3 и FeSO 4, в качестве щелочи NaOH, в качестве катионного флокулянта Праестол 655 и в качестве анионных флокулянтов Аквапол, Flopam AN 905 и Праестол 2540. Концентрации рабочих растворов реагентов:
    коагулянты 1%; флокулянты 0,1%; NaOH 5%.
После добавления (при перемешивании) выбранных реагентов в предварительно отобранных дозах и отстаивании в течение 1 часа были получены результаты, представленные в таблице 1. Из приведенных результатов считаем возможным сформулировать следующие рекомендации: 1. Обработку мазутсодержащих стоков производить коагулянтами Аl 2 (SO 4) 3 или FeSO 4 с подщелачиванием NaOH в дозах, указанных в табл.1 с последующим отстаиванием в течение не менее 1 часа. 2. При повышенном содержании мазута (более 10 мг/л в исходном стоке) следует предусмотреть дополнительную обработку стока флокулянтом Праестол 655 или Праестол 2540 в дозах, указанных в табл.1 с последующим отстаиванием. 3. Дочищенная по приведенной технологии вода может использоваться для подпитки оборотного цикла станции.

Таблица 1

Результаты лабораторных испытаний очистки натурного мазутсодержащего стока

Добавленные реагенты

Количество добавленных на 1000 см 3 стока реагентов, мг

Усредненная концентрация мазута в обработанном стоке, мг/дм 3

Праестол 2540

Праестол 655

Эксплуатация тепловых электрических станций связана с использованием большого количества воды. Основная часть воды (более 90%) расходуется в системах охлаждения различных аппаратов: конденсаторов турбин, масло- и воздухоохладителей, движущихся механизмов и др.

Сточной водой является любой поток воды, выводимый из цикла электростанции.

К сточным, или сбросным, водам кроме вод систем охлаждения относятся: сбросные воды систем гидрозолоулавливания (ГЗУ), отработавшие растворы после химических промывок теплосилового оборудования или его консервации: регенерационные и шламовые воды от водоочистительных (водоподготовительных) установок: нефтезагрязненные стоки, растворы и суспензии, возникающие при обмывах наружных поверхностей нагрева, главным образом воздухоподогревателей и водяных экономайзеров котлов, сжигающих сернистый мазут.

Составы перечисленных стоков различны и определяются типом ТЭС и основного оборудования, ее мощностью, видом топлива, составом исходной воды, способом водоподготовки в основном производстве и, конечно, уровнем эксплуатации.

Воды после охлаждения конденсаторов турбин и воздухоохладителей несут, как правило, только так называемое тепловое загрязнение, так как их температура на 8…10 °С превышает температуру воды в водоисточнике. В некоторых случаях охлаждающие воды могут вносить в природные водоемы и посторонние вещества. Это обусловлено тем, что в систему охлаждения включены также и маслоохладители, нарушение плотности которых может приводить к проникновению нефтепродуктов (масел) в охлаждающую воду. На мазутных ТЭС образуются сточные воды, содержащие мазут.

Масла могут попадать в сточные воды также из главного корпуса, гаражей, открытых распредустройств, маслохозяйств.

Количество вод систем охлаждения определяется в основном количеством отработавшего пара, поступающего в конденсаторы турбин. Следовательно, больше всего этих вод на конденсационных ТЭС (КЭС) и АЭС, где количество воды (т/ч), охлаждающей конденсаторы турбин, может быть найдено по формуле Q=KW где W - мощность станции, МВт; К-коэффициент, для ТЭС К= 100…150: для АЭС 150…200.

На электростанциях, использующих твердое топливо, удаление значительных количеств золы и шлака выполняется обычно гидравлическим способом, что требует большого количества воды. На ТЭС мощностью 4000 МВт, работающей на экибастузском угле, сжигается до 4000 т/ч этого топлива, при этом образуется около 1600…1700 т/ч золы. Для эвакуации этого количества со станции требуется не менее 8000 м3/ч воды. Поэтому основным направлением в этой области является создание оборотных систем ГЗУ, когда освободившаяся от золы и шлака осветленная вода направляется вновь на ТЭС в систему ГЗУ.

Сбросные воды ГЗУ значительно загрязнены взвешенными веществами, имеют повышенную минерализацию и в большинстве случаев повышенную щелочность. Кроме того, в них могут содержаться соединения фтора, мышьяка, ртути, ванадия.

Стоки после химической промывки или консервации теплосилового оборудования весьма разнообразны по своему составу вследствие обилия промывочных растворов. Для промывок применяются соляная, серная, плавиковая, сульфаминовая минеральные кислоты, а также органические кислоты: лимонная, ортофталевая, адипиновая, щавелевая, муравьиная, уксусная и др. Наряду с ними используются трилон Б, различные ингибиторы коррозии, поверхностно-активные вещества, тиомочевина, гидразин, нитриты, аммиак.

Еще статьи по теме

Экология водных объектов
Вода является ценнейшим природным ресурсом. Она играет исключительную роль в процессах обмена веществ, составляющих основу жизни. Огромное значение вода имеет в промышленном и сельскохозяйственном производстве; общеизвестна необходимость е...

Мониторинг и аудит промышленной и экологической безопасности
Переход к новым механизмам хозяйствования и развитому рынку невозможен без рационального и эффективного использования ресурсов, снижения экологического и экономического ущерба от аварийности и травматизма. Решение этой важной задачи требуе...

Дачный календарь