Чего делают углепластик. Углеродное волокно, что это такое, применение карбона в современном строительстве

Углепластики - это композиционные материалы на основе углеродных волокон и полимерных связующих, где для армирования используются различные виды углеродных волокон и волокнистых материалов.

Получение углепластиков

Основные методы получения композитов, армированных углеродными волокнами, являются обычными для волокнистых материалов. Получают углепластики обычно из заранее подготовленных препрегов, используя методы прессования, пултрузии, выкладки с последующим прессованием. Углеродным волокнам присуща высокая хрупкость, что требует осторожности при их переработке в углепластики: необходимо проводить прессование при высоких давлениях, а также избегать резких перегибов армирующих наполнителей.

Для удобства применения на основе углеродных и графитированных волокон и полимерных смол выпускают премиксы, препреги, пресс-волокниты, т.е. материалы, содержащие заданное количество армирующего наполнителя и полимерной матрицы, подготовленные для изготовления деталей и изделий.

В качестве связующих применяют чаще всего термореактивные смолы - эпоксидные, фенольные, полиимидные, которые обеспечивают высокую адгезию и высокую степень реализации механических свойств углеродных волокон, а также термостойкие термопласты: ароматические полиамиды, полисульфоны, поликарбонаты. Применение низкоплавких термопластов типа полиолефинов, алифатических полиамидов мало целесообразно, так как они не позволяют реализовать многие свойства углеродных наполнителей.

Высокопрочные и высокомодульные углепластики изготовляют из соответствующих видов углеродных нитей, жгутов и лент с высокими механическими характеристиками. Для наиболее полной реализации механических свойств углеродных наполнителей используется преимущественно однонаправленная и перекрестная укладка .

Свойства углепластика

Состав углепластиков определяется требованиями к изготовляемым из них изделиям. К углепластикам на основе карбонизованных или графитированных волокон относятся: пресс-материалы на основе углеродных (обычно карбонизованных) нетканых материалов и резаных волокон; углетекстолиты на основе углеродных (карбонизованных) и графитированных тканей; высокопрочные и высокомодульные углепластики на основе углеродных (графитированных) нитей, лент, жгутов в виде профилей, намотанных изделий, листов.

Графитированные волокна и волокнистые материалы имеют более высокие механические и термические свойства, однако они довольно дорогие.

Механические свойства углепластиков в направлении армирования определяются в значительной мере свойствами армирующих волокон и их расположением, в меньшей мере они зависят от связующего. Температурные характеристики углепластиков определяются в основном свойствами связующих.



Углерод-углеродные материалы могут эксплуатироваться при высоких температурах, а в инертной среде - до 2500°С .

Применение углеплстиков

Углеродные пресс-материалы и текстолиты служат для изготовления различных деталей, в качестве антифрикционных, хемостойких и др. Из них изготовляют, в частности, вкладыши подшипников. На основе пресс-волокнитов и листовых углеродных препрегов с фенольными и другими хемостойкими матрицами изготовляют детали насосов, арматуру, теплообменники, композиционные хемостойкие покрытия на металлических изделиях (чаще всего емкостях и другой химической аппаратуре). Углепластики используются также взамен ранее применявшихся материалов на основе асбеста (фаолит).

Углепластики на основе фенольных и полиимидных связующих, а также углерод-углеродные материалы используются в качестве высокотермостойких конструкционных изделий и покрытий. Выбор указанных связующих обусловлен тем, что при карбонизации они превращаются в кокс с высоким выходом по углероду, образуя при этом достаточно прочную углеродную матрицу.

Высокопрочные и высокомодульные углепластики, а также углетекстолиты применяются для изготовления наиболее ответственных деталей и изделий в летательных аппаратах, в судах, других транспортных средствах, медицинской технике, в спортивных изделиях, протезах.

Термопласты, содержащие углеродные волокна в количестве до 2-3%, применяются как антистатические материалы. Эффективность применения углеродных волокон как наполнителя существенно выше, чем традиционных добавок технического углерода, так как волокна образуют электропроводную «сетку» в материале при существенно меньшем их содержании .



Углеродные материалы имеют и медицинские области применения: живой организм их не отторгает. Поэтому если скрепить сломанную кость штифтом на основе углепластика, а поврежденное сухожилие заменить легкой и прочной углеродной лентой, то организм не воспримет этот материал как чужеродный.

Можно выделить следующие области применения углеродного волокна и углепластика:

Ракетостроение, авиастроение (самолетостроение, вертолетостроение, малая авиация);

Судостроение (военные корабли, спортивное судостроение);

Автомобилестроение (спортивные автомобили, мотоциклы, тюнинг);

Средства спортинвентаря (велосипеды, теннисные ракетки, удочки);

Специальные изделия (лопасти ветряных электрогенераторов и т.п.).

Передовые отрасли промышленности и строительства за последнее время освоили немало принципиально новых технологий, большая часть которых связана с инновационными материалами. Обычный пользователь мог заметить проявление данного процесса на примере стройматериалов с включением композитов. Также в автомобилестроении внедряются карбоновые элементы, повышающие эксплуатационные качества спорткаров. И это далеко не все направления, в которых задействуются углепластики. Основой для данного компонента выступают углеродные волокна, фото которых представлено ниже. Собственно, в непревзойденных технико-физических качествах и заключается уникальность и активное распространение композитов нового поколения.

Технология получения

Для производства материала используют сырье в виде природных или органического происхождения. Далее, в результате специальной обработки, от исходной заготовки остаются только углеродные атомы. Главной воздействующей силой является температура. Технологический процесс предусматривает выполнение нескольких этапов термообработки. На первой стадии происходит окисление первичной структуры в условиях температурного режима до 250 °C. На следующем этапе получение углеродных волокон переходит в процедуру карбонизации, в результате которой материал нагревается в азотной среде при высоких температурах до 1500 °C. Таким образом формируется графитоподобная структура. Завершает весь процесс изготовления финальная обработка в виде графитизации при 3000 °C. На этой стадии содержание чистого углерода в волокнах достигает 99 %.

Где применяется волокно углеродное?

Если в первые годы популяризации материал использовался исключительно в узкоспециализированных областях, то сегодня наблюдается расширение производств, в которых задействуется данное химволокно. Материал довольно пластичен и разнороден в плане возможностей эксплуатации. С большой вероятностью области применения таких волокон будут расширяться, но уже сегодня оформились базовые типы представления материала на рынке. В частности, можно отметить строительную сферу, медицину, изготовление электротехники, бытовых приборов и т. д. Что касается специализированных областей, то использование углеродных волокон по-прежнему актуально для производителей авиатехники, медицинских электродов и

Формы изготовления

В первую очередь это термоустойчивые текстильные изделия, среди которых можно выделить ткани, нити, трикотаж, войлок и т. д. Более технологичным направлением является изготовление композитов. Пожалуй, это наиболее широкий сегмент, в котором представлено волокно углеродное как основа изделий для серийного производства. В частности, это подшипники, термоустойчивые узлы, детали и различные элементы, которые работают в условиях агрессивных сред. Преимущественно композиты ориентированы на рынок автомобилестроения, однако и строительная область довольно охотно рассматривает новые предложения от изготовителей данного химволокна.

Свойства материала

Специфика технологии получения материала наложила свой отпечаток на эксплуатационные качества волокон. В результате высокая термическая стойкость стала главной отличительной чертой структуры таких изделий. Кроме тепловых воздействий, материал устойчив и к химическим агрессивным средам. Правда, если в процессе окисления при нагревании присутствует кислород, это губительно сказывается на волокнах. Зато механическая прочность углеродного волокна может составить конкуренцию многим традиционным материалам, которые считаются твердотельными и стойкими к повреждениям. Это качество особенно выражено в карбоновых изделиях. Еще одним свойством, которое имеет спрос среди технологов различной продукции, является способность абсорбции. Благодаря активной поверхности данное волокно можно рассматривать в качестве эффективной каталитической системы.

Производители

Передовиками в сегменте являются американские, японские и немецкие компании. Российские технологии в этой области практически не развивались последние годы и по-прежнему базируются на разработках времен СССР. На сегодняшний день половина изготавливаемых в мире волокон приходится на долю японских компаний Mitsubishi, Kureha, Teijin и др. Другую часть делят между собой немцы и американцы. Так, со стороны США выступает компания Cytec, а в Германии волокно углеродное производит фирма SGL. Не так давно в список лидеров этого направления вошло и тайваньское предприятие Formosa Plastics. Что касается отечественного производства, то разработками композитов занимаются лишь две компании - «Аргон» и «Химволокно». При этом серьезные достижения за последние годы сделали белорусские и украинские предприниматели, осваивающие новые ниши для коммерческого использования углепластиков.

Будущее углеродных волокон

Поскольку некоторые виды углепластиков уже в ближайшее время позволят выпускать изделия, способные сохранять изначальную структуру миллионы лет, многие специалисты предсказывают перепроизводство подобной продукции. Несмотря на это, заинтересованные компании продолжают вести гонку технологических обновлений. И во многом это оправдано, так как свойства углеродных волокон на порядок превосходят аналогичные качества традиционных материалов. Достаточно вспомнить прочность и термостойкость. Исходя из этих достоинств разработчики и осваивают новые направления развития. Внедрение материала, скорее всего, будет охватывать не только специализированные сферы, но и близкие к массовому потребителю области. Например, обычные пластиковые, алюминиевые и деревянные элементы могут заменяться углепластиком, который по целому ряду эксплуатационных качеств будет превосходить привычные материалы.

Заключение

Широкому распространению инновационному химволокну мешают многие факторы. Одним из самых существенных является высокая стоимость. Поскольку волокно углеродное требует задействования высокотехнологичного оборудования для изготовления, его получение может себе позволить далеко не каждая компания. Но и это не самое главное. Дело в том, что далеко не во всех сферах производители заинтересованы в столь радикальных изменениях качества продукции. Так, повышая долговечность одного элемента инфраструктуры, производитель не всегда может выполнить аналогичную модернизацию на смежных компонентах. В итоге получается дисбаланс, который сводит к нулю все достижения новых технологий.

Что такое карбон?

Карбон – это техническая ткань, состоящая из тысяч переплетенных между собой углеродных волокон, образующих ту самую ткань. Карбон выпускается в виде тканей с самыми разнообразными переплетениями в зависимости от целевого применения и является всего лишь одной частью конструкционных материалов, включающих в себя много частей, которые известны всем, как композитные материалы. Композиты производятся из составляющих, которые объединяют в себе качества разных материалов, а целью является отсутствие жесткости или получение прочности. В случае с карбоном, стекловолокном, Кевларом или другими аналогичными тканями, композитный материал, о котором идет речь, носит название «FRP» (Fiber Reinforced Polymer – полимер, армированный волокнами). В производстве такого полимера ткань используется для того, чтобы «усилить» конструкционную жесткость смолистого подслоя. Смола обеспечивает прочность композита, а карбон добавляет структурную целостность пластику, который в ином случае будет хрупким.

Как производится карбон?

Карбон (углеволокно), как видно из его названия, это ткань, состоящая только из угля и не имеющая иных элементов в своем составе. Но начинать производство просто с карбона и с создания ткани с переплетениями волокон было бы настоящим, но труднодостижимым, подвигом. Вместо использования карбона в качестве сырья, заводы по производству текстиля начинают с пластмасс с более сложным молекулярным составом, где толщина нити меньше толщины человеческого волоса. Затем требуется выполнить ряд определенных действий, начиная от термообработки и заканчивая химической обработкой. Окончательным результатом этих сложных процессов является доводка состава полимерных материалов до его самой эмпирической формы – формы чистого карбона.

Карбон часто замеряется и продается с ориентиром на несколько критериев, на тип плетения волокон, на абсолютные значения (измерение прочности отдельно взятого волокна) и вес ткани. Все замеры идут в унциях на квадратный ярд, плюс указывается количество волокон (обычно в диапазоне от 3 000 до 12 000 волокон).

Какие существуют типы переплетения?

Однонаправленное плетение:

Однонаправленное плетение подразумевает направление всех карбоновых жгутов (волокон) в одном и том же направлении. Плетение в этом стиле не является видимым невооруженному глазу. Поскольку плетение, как таковое, отсутствует, нити волокна необходимо как-то удерживать вместе. И в этом случае необходимо протягивать другую нить по диагонали или перпендикулярно так, чтобы ткань оставалась гладкой и равномерной (и этот элемент плетения не является конструкционным). В результате того, что жесткость ткани обеспечивается только в одном направлении, такой тип плетения редко применяется в автоспорте, где нагрузка может идти в любом направлении.

Двунаправленное плетение волокон:

Карбон двунаправленного плетения – это базовый и наиболее часто встречающийся тип переплетения волокна. Жгуты переплетаются друг с другом под требуемым углом, за счет чего ткань получает структуру типа «шахматная доска», где нити полотна прокладываются боком и по вертикали. В этом случае все волокна направлены таким образом, чтобы нагрузка могла налагаться в любом направлении, при этом композитный материал должен сохранять свою прочность.

Плетение по диагонали в две через две нити

Плетение по диагонали в две через две нити – это самый распространенный тип плетения карбона, который повсеместно применяется в автоспорте. Это плетение немного сложнее по сравнению с двунаправленным волокном, поскольку две нити проходят над другими двумя нитями, либо одна над двумя или две над одной. В результате такого переплетения нитей на ткани создается рисунок «елочка». Из-за того, что плетение две через две нити по диагонали идет как с вертикальными, так и с горизонтальными нитями (нить основы и уток), ткань становится очень гибкой и может принимать различные сложные формы. При работе с карбоном этого типа плетения не требуется выполнять такие работы, как «пакетирование», «растягивание» или резка.

Плетение по диагонали в четыре через четыре нити

Аналогично плетению по диагонали в две через две нити, а именно в четыре через четыре нити, этот тип относится к двустороннему переплетению по диагонали, где один жгут включает в себя четыре нити. В результате ткань не настолько плотная по сравнению с плетением в две через две нити, но в случае с изогнутыми поверхностями достигается лучший коэффициент покрытия, поскольку между фактическими точками переплетения «над и под» расстояние больше, что эффективнее, поскольку в этом случае достигается меньшее количество жестких швов. Благодаря этому покрытие карбоном изогнутых литых форм становится простым.

Прорезиненное переплетение

Прорезиненная карбоновая ткань – это очень специфический способ изготовления ткани, который встречается намного реже по сравнению со всеми типами плетения, которые мы обсуждаем. Прорезиненное плетение волокон означает, что каждая прядь состоит от 3000 до 12000 нитей, при этом каждая нить выкладывается плотно в ряд, одна за другой, образуя тончайшую карбоновую ленту. Стандартные пряди соединяются вместе посредством нескольких слоев карбоновых нитей. Прорезиненную ткань можно определить за счет наличия широких открытых участков. За счет шахматного порядка двунаправленного карбонового волокна со структурой прорезиненной ткани образуются квадратные участки размером один дюйм.

Поскольку за счет крупного размера этих участков переплетения ткань теряет в своей плотности, точки плетения «над и под» находятся на большом расстоянии друг от друга. Итак, точки пересечения нитей находятся на расстоянии друг от друга, частота изменения направления сильно снижена, и ткань может намного плотнее прилегать к поверхности.

Как было описано на сайте, английском поставщике материалов и полимеров, «прорезиненные ткани набирают свою популярность в сфере применения высокотехнологичных композитов благодаря своему невероятно плоскому профилю, который практически исключает так называемый «копир-эффект» и эффект проявления определенной текстуры на поверхностях, требующих идеальной гладкости (например, крылья самолета).

Поскольку слой ткани намного тоньше, можно накладывать слой поверх другого слоя и тем самым достичь необходимых прочностных характеристик. Этот тип карбона часто используется в тех сферах, где аэродинамические характеристики преобладают над прочностными. Прорезиненная ткань имеет внешний вид, отличный от стандартного, который сразу вызывает или любовь, или ненависть.

Различные смолы

Карбоновая ткань является только одной составляющей композитного материала, на который ссылаются, когда говорят об автоспорте и гонках на треках. Другим важным компонентом является смола, которая обогащает саму ткань и придает ей фактическую жесткость. Смолы применяются в различных полимерных «блюдах». Два наиболее часто используемых материала - это эпоксидная смола и полиэфирная смола. Любой, кто когда-либо работал со стекловолокном, чтобы просто починить хоть свою доску для серфинга, хоть деталь от автомобиля, знает, что эта смола может оказаться самой настоящей проблемой. Летучие органические соединения (ЛОС) – это пары, которые являются отличительной чертой многих вид смол, хотя в свободном доступе есть и такие, в которых эти химические составляющие, способные повредить ваш мозг, не применяются. Практически всем известен обратный эффект работы со смолой, когда надлежащие средства индивидуальной защиты не используются, но при этом развивается гиперчувствительность и аллергия. И эти случаи стали уже настолько привычными, что мы часто слышим анекдоты про людей, не способных находиться в помещении, в котором идет работа со смолой.

Эпоксидная смола

Эпоксидная смола – это самая распространенная многоцелевая структурная смола. Как и в случае с практически всеми типами смол, это двухкомпонентный раствор из смолы и катализатора. Время реакции варьируется, но при этом напрямую зависит от условий окружающей среды. Срок годности (рабочее время), в основном, составляет от пяти до тридцати минут. В общем, тепловое воздействие всегда ускоряет процесс «созревания», но весь процесс схватывания обычно занимает, ни много, ни мало, а целые сутки (24 часа) – если на смесь никак не воздействовать. По сравнению с полиэфирной смолой эпоксидная смола отличается более высокой прочностью, но требует терпения при работе с ней.

Полиэфирная смола

Полиэфирная смола – это более дешевая альтернатива эпоксидной смоле, с быстрым временем схватывания. В основном, она используется в тех ситуациях, когда структурная целостность уступает эстетической стороне вопроса, как утверждают специалисты с сайта easycomposites.co.uk: «Тем не менее, существуют ситуации, в которых многослойная структура имеет наименьшее значение, а такие свойства, как внешний вид, стойкость к УФ излучению и цена, стоят на первом месте по своей значимости».

Препреги (ткани с предварительной пропиткой)

Некоторые ткани из карбона могут выпускаться, как предварительно пропитанные раствором смолы, где катализатором выступает термообработка. Препреги используются во многих промышленных сферах, занятых производством композитов, поскольку их применение не требует выполнения каких-то сложных процессов, а при непосредственной работе беспорядок сведен к минимуму: нужно всего лишь смешать смолы и уложить влажную ткань слоями.

Препреги также являются предпочтительным материалом в тех сферах промышленности, где вес играет важную роль. К таким сферам относится авиация, где большая часть от массы деталей приходится на смолу, а не на ткань. С учетом того минимума, который нужен для тщательной и равномерной пропитки ткани смолой, препрег может применяться для создания самой прочной и легковесной конструкции.

Производственные процессы

Влажные выкладки

Традиционно небольшие детали выкладываются во влажном состоянии, вместе с вогнутой формой, затем создается пробка (но это уже другая история). Сухая ткань размещается внутри формы. Смола наносится малярной кистью до тех пор, пока ткань не будет ей насквозь пропитана или насыщена. Следующие слои ткани кладутся поверх первого слоя, при этом нужно соблюдать направление плетения: 45 градусов для двунаправленного плетения и 90 градусов для ткани с саржевым переплетением. Если слои ткани не совпадают по направлениям, на выходе деталь потеряет свою жесткость по одной оси, а по другой будет слишком усилена.

Уложив, таким образом, столько слоев ткани, сколько необходимо для получения нужной толщины, излишек смолы соскребается с помощью скребка так, будто вы убираете воду со своего ветрового стекла. Затем деталь подвергается обработке в вакуумном мешке под низким давлением. В результате смола заполняет все оставшиеся воздушные пустоты, вытесняя тем самым мельчайшие воздушные пузырьки, а излишки смолы уходят.

В некоторых случаях все эти манипуляции выполняются в обратном порядке. Сухая ткань подвергается обработке в вакуумном мешке в форме, и только затем наносится смола. Благодаря этому методу отходы и грязь отсутствуют. На финальном этапе проходит термообработка. Все детали «запекаются» внутри духовки под давлением, так называемом автоклаве, и смола полностью схватывается.

Хотя большинство не имеет доступа к специализированному оборудованию, такие процедуры, как обработка в вакуумном мешке и запекание в автоклаве являются факультативными для рабочих деталей, структура которых не должна отвечать специфическим требованиям.

Сферы применения

Карбон набрал свою силу в автомобильной сфере промышленности. На вторичном рынке карбон – это материал, который чаще всего используется для покрытия деталей. Кузовные детали, детали для внутренней отделки салона – и все это выполнено из карбона, который обеспечивает автомобилю внешний вид высочайшего класса. Функционально детали из карбона применяются практически во всех сферах – начиная от автомобильной промышленности, продолжая судостроением и заканчивая авиацией.

Карбон используется в постройке гоночных кресел, карданных валов, таких защитных приспособлений, как шлемы и средства пассивной безопасности (подголовники), и даже технология производства составных пружин начинает применять карбон для систем подвесок.

Карбон – это не панацея

Привлекательность карбона настолько высока для многих, что сегодня существует тенденция неверного использования этого материала в тех сферах, где наилучшим решением до сих пор является металлический сплав. Карбон, а особенно смола, плохо переносят работу в высокотемпературной среде, с теплозащитой, с компонентами выхлопной системы или любыми другими деталями двигателя. Когда в этих случаях карбон выбирается в качестве исходного материала, следует очень тщательно проводить оценку рабочих условий. Существуют жаропрочные смолы, но сфера их применения до сих пор имеет свои ограничения.

Сопротивление удару

Карбон может похвастаться тем, что эта (уже ставшая крылатой) фраза полностью отвечает его сущности: чем легче алюминий, тем прочнее сталь. Хотя это действительно правда, важно понимать, что речь идет о прочности на разрыв, а не об ударной вязкости или жесткости. С инженерной точки зрения «ударная вязкость» - это технический термин, который говорит об износостойкости, поскольку этот композит является армированным слоистым полиэстером, сопротивление удару которого - низкое. И даже слабый точечный удар может привести к отслаиванию и, в кончено итоге, выходу материла из строя. По этой причине карбон не может применяться для создания износостойких или многоразовых опорных плит седельно-сцепного устройства удовлетворительного качества, для производства различных компонентов подвески или любых других деталей, которые эксплуатируются в условиях максимальной нагрузки.

Проводимость

Карбон является проводимым материалом! Чистый карбон чрезвычайно эффективно передает тепло сам по себе. Например, капот автомобиля, выполненный из карбона, может очень быстро нагреваться на солнце до нескольких сот градусов. Ультрафиолетовые лучи могут повредить композит: придать ему желтый оттенок или стать причиной растрескивания смолы, поэтому деформация является распространенным дефектом. В авиации многие запчасти из карбона покрываются глянцевой белой краской, поскольку тепло, образующееся от воздействия УФ лучей, может деформировать раму, оказать негативное воздействие на аэродинамические характеристики. Кроме того, УФ лучи могут как-то иначе изменить структуру самолета.

Карбон – это еще и электропроводящий материал. Возможно, вас смутит то, каким же образом композит на основе пластмассы может вдруг стать электропроводящим, но ткань из чистого карбона «прокладывает» своеобразный путь электричеству, даже если карбон обогащен изоляционным полимером. Когда карбон выбирается в качестве поверхности для электроники или в качестве кожуха охлаждающего вентилятора, убедитесь в наличии заземления, которое не должно «проходить» через карбон. Анекдот из жизни: мы как-то были свидетелями чуть не начавшегося возгорания в двигателе владельца грузовика Geiser Trophy, поскольку он просто-напросто не верил, что карбон является проводимым материалом, а возгорание смолы – это вам не шутки.

Работа с карбоном

Если стекловолокно когда-нибудь попадало вам на кожу, то вы знаете, как сильно раздражают эти невидимые глазу частички. А карбон гораздо хуже! Избегайте прикасаться голыми руками к рваным краям карбона и к рубленому волокну.

При заказе ткани из карбона важно убедиться, что он поставляется в рулонах, как оберточная бумага. Карбон, упакованный «сложениями», будет иметь загибы и, в результате, конструкционная целостность его загнутых волокон будет нарушена. Соблюдайте эти инструкции при работе с материалом, и храните ткань в чистоте во избежание появления пыли и жирных отпечатков пальцев, обеспечивая при этом максимально правильную укладку. Смешивать смолу необходимо в небольших емкостях, что является нормой. Будьте внимательны, смолу нельзя смешивать в емкостях, покрытых воском. Воск вступает в реакцию со смолами, в результате чего смола затвердевает. Затвердевание смолы – это экзотермическая реакция, что значит нагнетание тепла в качестве побочного продукта в результате химической реакции. Смешивая большое количество смолы, убедитесь, что ее излишки находятся вне зоны хранения горючих материалов, иначе существует высокий риск возникновения пожара.

Заключение

Объем базовых знаний, которые мы даже не затронули в этой статье, просто огромен. Но мы надеемся, что этот общий обзор помог вам лучше представить себе, что такое карбон. Это крайне универсальный и прочный материал, если с ним обращаться с умом. Но если его использовать неверно, он становится самым настоящим бельмом на глазу. Создание простых деталей в домашних условиях не представляет собою никаких сложностей, но приготовьтесь выделить немного больше времени на работу с ним по сравнению со стекловолокном. Учитывайте в своем проекте все – цели, бюджет. И только потом принимайте решение, является ли карбон правильным выбором или вам просто хочется добавить эстетики своему автомобилю?

Данные взяты с сайта: tourerv.ru

Карбон (материал)

Углепластик - полимерный композиционный материал из переплетенных нитей углерода, расположенных в матрице из полимерных (например, эпоксидных) смол.

Основная составляющая часть углепластика – это нити углерода (по сути, тоже самое что и, например, стержень в карандаше). Такие нити очень тонкие, сломать их очень просто, а вот порвать достаточно трудно. Из этих нитей сплетаются ткани. Они могут иметь разный рисунок плетения (ёлочка, рогожа и проч.). Для придания еще большей прочности данные ткани из нитей углерода кладут слоями, каждый раз меняя угол направления плетения. Слои скрепляются с помощью эпоксидных смол. Применяется для изготовления лёгких, но прочных деталей, например: кокпиты и обтекатели в Формуле 1 , спиннинги , мачты для виндсерфинга , бамперы и пороги на спортивных автомобилях, несущие винты вертолётов .

Нити углерода обычно получают термической обработкой химических или природных органических волокон, при которой в материале волокна остаются главным образом атомы углерода.

Температурная обработка состоит из нескольких этапов.

Первый из них представляет собой окисление исходного (полиакрилонитрильного, вискозного) волокна на воздухе при температуре 250 °C в течение 24 часов.

В результате окисления образуются лестничные структуры.

После окисления следует стадия карбонизации - нагрева волокна в среде азота или аргона при температурах от 800 до 1500 °C. В результате карбонизации происходит образование графитоподобных структур.

Процесс термической обработки заканчивается графитизацией при температуре 1600-3000°С, которая также проходит в инертной среде. В результате графитизации количество углерода в волокне доводится до 99 %.

Помимо обычных органических волокон (чаще всего вискозных и полиакрилонитрильных), для получения нитей углерода могут быть использованы специальные волокна из фенольных смол, лигнина, каменноугольных и нефтяных пеков.

Кроме того, детали из карбона превосходят по прочности детали из стекловолокна.

Детали из карбона обходятся значительно дороже аналогичных деталей из стекловолокна.

«Дороговизна» карбона вызвана, прежде всего, более сложной технологией производства и большей стоимостью производных материалов.

Например, для проклейки слоев используются более дорогие и качественные смолы, чем при работе со стеклотканью, а для производства деталей требуется более дорогое оборудования, к примеру, такое как автоклав .

Недостатком карбона является боязнь "точечных" ударов. Например, капот из карбона может превратиться в решето после частого попадания мелких камней. В отличие от металлических деталей или деталей из стеклоткани, восстановить первоначальный вид карбоновых деталей невозможно. Поэтому, после даже незначительного повреждения всю деталь придется менять целиком. Кроме того, детали из карбона подвержены выцветанию под воздействием солнечных лучей.

Применение

Корпус зеркала гоночного автомобиля из углепластика

Используется вместо металлов во многих изделиях, от частей космических кораблей до удочек

  • ракетно-космическая техника
  • авиатехника (самолетостроение, вертолетостроение)
  • судостроение (корабли, спортивное судостроение)
  • автомобилестроение (спортивные автомобили, мотоциклы, тюнинг и отделка)
  • наука и исследования
  • спортивный инвентарь (велосипеды,роликовые коньки, удочки)
  • медицинская техника
  • рыболовные снасти (удилища)
  • телефоно- и ноутбукостроение (отделка корпусов)

Wikimedia Foundation . 2010 .

Смотреть что такое "Карбон (материал)" в других словарях:

    Карбон: Карбон материал Карбон (геологический период) Carbon рабочая среда приложений, являющаяся упрощённой и обновлённой версией предыдущей рабочей среды Apple Mac OS 9. Need for Speed: Carbon компьютерная игра … Википедия

    Самая крупная среди союзных республик CCCP по терр. и населению. Pасположена в вост. части Eвропы и в сев. части Aзии. Пл. 17,08 млн. км2. Hac. 145 млн. чел. (на 1 янв. 1987). Cтолица Mосква. B состав РСФСР входят 16 авт. республик, 5 авт … Геологическая энциклопедия

    У этого термина существуют и другие значения, см. Клюшка. Хоккейная клюшка полевого игрока и вратаря. Клюшка для хоккея с шайбой – спортивный снаряд, используемый в х … Википедия

    Луций Корнелий Цинна (лат. Lucius Cornelius Cinna, ум. 84 до н. э.) древнеримский политический деятель, знаменитый представитель партии популяров в Риме в последнем веке существования республики. О жизни его до времени выступления на политическую … Википедия

    Луций Корнелий Цинна (лат. Lucius Cornelius Cinna, ум. 84 до н. э.) древнеримский политический деятель, знаменитый представитель партии популяров в Риме в последнем веке существования республики. О жизни его до времени выступления на политическую … Википедия - твёрдые горючие полезные ископаемые осадочного происхождения. В состав У. и. входят: органическое вещество продукт преобразования высших и низших растений с участием микроорганизмов планктона, минеральные примеси (условно не более 50%) и… … Большая советская энциклопедия

    Стальная рама и вилка из карбонового волокна от шоссейного велосипеда 2000 г., LeMond Zurich … Википедия

Среди всевозможных пластиков и композитов, разработанных химиками-технологами, особое место в современном мире занимает карбон (углеволокно) - материал на основе тончайших углеродных нитей. Он на 75% легче железа и на 30% - алюминия, и при этом имеет прочность на разрыв в четыре раза выше, чем у лучших марок стали.
Сами по себе карбоновые нити довольно хрупкие, поэтому из них плетут гибкие и эластичные полотнища. При добавлении к ним связующих полимерных составов получают углепластики, которые совершили настоящий переворот в спорте, технике и многих других областях человеческой деятельности.

На дорогах, в небе и на море

Наиболее широко известная область применения карбона – это автомобилестроение. Вначале его выдающееся сочетание прочности и легкости заинтересовало конструкторов болидов Формулы-1, что позволило значительно снизить вес гоночных машин. Джон Бернард, инженер британского автомобильного производителя McLaren, впервые сделал элементы кузова из углеволокна в начале 1980-х гг. Это дало столь ощутимую прибавку в скорости, что сразу привело гоночную команду McLaren на призовые места.

Впрочем, право быть самым быстрым обходится весьма недешево из-за того, что все углепластиковые детали фактически изготавливаются вручную. Карбоновую ткань особого плетения выкладывают в литейные формы, затем соединяют полимерными составами. На заключительном этапе она подвергается обработке при высокой температуре и давлении. Поэтому долгое время карбоновые элементы кузова использовались только в суперкарах и моделях премиального класса. И лишь недавно анонсирован выпуск доступных широкой аудитории серийных моделей с углепластиковыми деталями. Так, в конструкции кузова нового BMW i3 будут широко представлены элементы из углеродного волокна. А в новой версии хэтчбека Volkswagen Golf GTI VII благодаря углепластиковым капоту и крыше удалось снизить вес машины сразу на 200 кг!

Еще более широкое применение материалы на основе карбона получили в авиастроении, где они начали теснить традиционные алюминий и титан. Первыми перспективы оценили авиаконструкторы, работающие в оборонной промышленности. Например, в новейших российских истребителях Су-47 и Т-50 используются углепластиковые компоненты крыла и фюзеляжа.

Все шире применяется карбон и в пассажирских самолетах, где он позволяет снизить расход топлива и повысить грузоподъемность. Так, в лайнере Boeing 787 Dreamliner не менее 50% элементов фюзеляжа изготовлены из композитных материалов на основе углерода, благодаря чему расход топлива снижен на 20%. С той же целью самый большой пассажирский авиалайнер Airbus А380 оснастили крыльями, которые на 40% состоят из углепластиков. А фюзеляж современного бизнес-джета Hawker 4000 почти целиком изготовлен из этого материала!

Не менее активно используется карбон и в кораблестроении. Причина популярности та же: уникальное соотношение прочности и веса, жизненно важное в суровых морских условиях. Кроме того, для корабелов ценны ударопрочность и коррозионная стойкость этого материала.

Как обычно, первыми начали применять углепластики в оборонной сфере. Из карбоновых композитов делают элементы корпусов подводных лодок, поскольку они серьезно снижают шум и обладают stealth-эффектом, делая судно «невидимым» для радаров противника. А в шведских корветах типа «Visbi» корпус и надстройки сделаны из карбоновых композитов по stealth-технологии. Используется многослойный материал с основой из ПВХ, которая покрыта тканью особого плетения из углеродных жгутов. Каждый такой жгут поглощает и рассеивает радиоволны от радаров, не давая обнаружить судно.

Для гражданских кораблей невидимость для радаров не нужна, а вот легкость, прочность и возможность изготавливать детали практически любой конфигурации оказались очень востребованными. Чаще всего карбон применяют при строительстве спортивных и прогулочных яхт, где важны скоростные характеристики.

Элементы будущего судна «лепятся» из углепластиковых холстов по компьютерной модели как из пластилина. Вначале делается полноразмерный макет палубы и корпуса из специального модельного пластика. Затем по этим лекалам вручную слоями выклеиваются полотнища карбоновой ткани, скрепляемой эпоксидными смолами. После просушки готовый корпус шлифуют, красят и покрывают лаком.

Впрочем, есть и более современные способы. Например, итальянская компания Lanulfi сумела почти полностью автоматизировать процесс. Крупные конструктивные элементы судна с помощью 3D моделирования разбивают на более мелкие, но идеально совпадающие части. По компьютерной модели с помощью станка с программным управлением выполняются основы, которые и служат матрицами для выклеивания углепластиковых деталей. Такой подход позволяет добиться максимальной точности, что очень важно для ходовых качеств спортивных яхт.

Карбон для каждого

Карбон начинает все шире применяться и в строительстве. Добавление углеродных волокон в состав бетона делает его гораздо более устойчивым к внешним воздействиям. Фактически получается сверхпрочный монолит с очень плотной поверхностью. Такая технология применяется в строительстве небоскребов и плотин, а также при обустройстве туннелей.

Стоит упомянуть и материалы для усиления, ремонта и реставрации железобетонных поверхностей - специальные холсты и пластины из карбоновой ткани (например, Mapewrap или Carboplate). Они позволяют полностью восстановить конструкцию, не прибегая к дорогостоящей и не всегда возможной перезаливке.

Для крупных девелоперов и частных застройщиков особо интересна такая инновация, как применение карбона в штукатурной системе утепления фасадов.

Справка

«Добавление в армирующий состав мельчайших карбоновых волокон диаметром менее 15 микрон приводит к очень важному результату – многократному увеличению ударопрочности фасада, – говорит Роман Рязанцев, проект-менеджер компании CAPAROL, эксперта в области защиты и теплоизоляции фасадов зданий. – В частности, карбоновая добавка в штукатурную систему CAPATECT Carbon (Caparol) позволяет фасаду без вреда переносить удары с энергией до 60 Джоулей – это в десять раз больше, чем способны выдерживать обычные варианты штукатурных фасадов».

Если владелец коттеджа решит использовать такую систему для внешней отделки своего жилища, то он не только сократит затраты на отопление и обеспечит благоприятный микроклимат в помещениях, но и защитит стены от любых механических воздействий. Крупный град разбивает виниловый сайдинг и оставляет вмятины на обычной песчаной штукатурке. Шквалистый ветер, несущий с собой мусор и ветки деревьев, также может повредить фасад. Но на отделке с добавлением карбоновых волокон не останется ни следа. Тем более не страшны ей такие бытовые воздействия, как удары мячом или шайбой в детских играх.

«Обычно для защиты цокольной части фасада от случайных повреждений используют облицовку камнем, например, керамогранитом, - отмечает Даниил Мазуров руководитель отдела оптовых продаж московской строительно-торговой компании «ПКК Интерстройтехнологии». – Но для отделки цокольной части жилого комплекса, который сейчас строится на юге Москвы, мы решили попробовать штукатурную систему с карбоном. В сравнительных испытаниях она показывала очень впечатляющие результаты».

Вадим Пащенко, руководитель направления WDVS Московского регионального отдела компании CAPAROL, называет еще одно ценное следствие применения в штукатурной системе армирующих компонентов с карбоновыми волокнами: фасад становится устойчив к температурным деформациям. Для архитекторов и владельцев частных домов это означает полную свободу в самовыражении – можно окрасить стены дома в любые самые тёмные и насыщенные цвета. С традиционной цементно-песчаной штукатуркой такие эксперименты могут закончиться печально. Темная поверхность стены слишком быстро нагревается под солнечными лучами, что приводит к образованию трещин на внешнем защитно-декоративном слое. Но для фасадной системы с карбоновыми волокнами подобной проблемы не существует.

Сейчас по всей Европе начинают появляться выделяющиеся на общем фоне частные коттеджи и коммерческие здания, школы и детские сады, которым карбон помог обрести выразительные и насыщенные цвета. По мере того как российские частные домовладельцы начинают экспериментировать с цветами фасадов, отходя от традиционных пастельных оттенков, эта инновационная технология становится востребована и в нашей стране.

Поколение Next

Без карбона ныне невозможно представить ни одну высокотехнологичную отрасль. Он становится все доступнее и для обычных людей. Сейчас мы можем приобрести углепластиковые лыжи, сноуборды, горные ботинки, спиннинги и велосипеды, шлемы и прочую спортивную экипировку.

Но на смену ему уже идет новое поколение материалов - углеродные нанотрубки, которые в десятки раз прочнее стали и обладают массой других ценнейших свойств.


Схематическое изображение нанотрубки

Так, канадский производитель одежды Garrison Bespoke разработал мужской костюм, который сделан из ткани на основе углеродных нанотрубок. Такая ткань останавливает пули до сорок пятого калибра и защищает от колющих ножевых ранений. Кроме того, она на 50% легче кевлара - синтетического материала, используемого для изготовления бронежилетов. Подобные костюмы наверняка войдут в моду среди бизнесменов и политиков.

К числу самых фантастических применений карбоновых нанотрубок относится космический лифт, который позволит доставлять на орбиту грузы без дорогих и опасных запусков ракет. Его основой должен стать сверхпрочный трос, протянутый от поверхности планеты к космической станции, находящейся на геостационарной орбите на высоте 35 тыс. км над Землей.

Эта идея была предложена еще великим русским ученым Константином Циолковским в 1895 году. Но до сих пор проект казался неосуществимым по техническим причинам, ведь не было известно материалов, из которых можно сделать настолько прочный трос. Однако открытие углеродных нанотрубок в начале 1990-х гг. заставило пересмотреть границы возможного. Сотканная из карбоновых нанотрубок нить миллиметровой толщины, способна выдержать нагрузку примерно 30 тонн. А значит, дешевые и безопасные путешествия на орбиту в кабине космического лифта из фантастического сюжета превращаются в практическую задачу для инженеров.

Сезонные работы